DOI QR코드

DOI QR Code

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan (Department of Earthquake Engineering, Indian Institute of Technology Roorkee) ;
  • Jakka, Ravi S. (Department of Earthquake Engineering, Indian Institute of Technology Roorkee) ;
  • Wason, H.R. (Department of Earthquake Engineering, Indian Institute of Technology Roorkee)
  • Received : 2015.04.29
  • Accepted : 2017.08.03
  • Published : 2017.11.25

Abstract

Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.

Keywords

Acknowledgement

Supported by : Department of Science and Technology (DST), Government of India

References

  1. Aung, A.M.W. and Leong, E.C. (2010), "Discussion of "Near-field effects on array-based surface wave methods with active sources", J. Geotech. Geoenviron. Eng., 136(5), 773-775. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000131
  2. Aung, A.M.W. and Leong, E.C. (2011), "Finite element modeling of continuous surface waves tests: Numerical accuracy with respect to domain size", J. Geotech. Geoenviron. Eng., 137(12), 1294-1298. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000545
  3. Boaga, J., Renzi, S., Vignoli, G., Deiana, R. and Cassiani, G. (2012), "From surface wave inversion to seismic site response prediction: Beyond the 1D approach", Soil Dyn. Earthq. Eng., 36, 38-51. https://doi.org/10.1016/j.soildyn.2012.01.001
  4. Boaga, J., Vignoli, G. and Cassiani, G. (2011), "Shear wave profiles from surface wave inversion: The impact of uncertainty on seismic site response analysis", J. Geophys. Eng. 8(2), 162-174. https://doi.org/10.1088/1742-2132/8/2/004
  5. Boiero, D. and Socco, L.V. (2011), "The meaning of surface wave dispersion curves in weakly laterally varying structures", Near Surf. Geophys., 9(6), 561-570.
  6. Brinkgreve, R.B.J. (2002), Plaxis 2-D Version 8.2, A.A. Balkema Publisher, Lisse, The Netherlands.
  7. Dunkin, J.W. (1965), "Computation of modal solution in layered elastic media at high frequencies", Bull. Seis. Soc. Am., 55(2), 335-358.
  8. Estorff, O.V., Pais, A.L. and Kausel, E. (1990), "Some observations on time domain and frequency domain boundary elements", J. Num. Met. Eng., 29(4), 785-800. https://doi.org/10.1002/nme.1620290408
  9. Evangelista, L. and Santaucci, D.M. (2015), "Some limits in the use of the MASW technique in soils with inclined layers", Geotech. Geol. Eng., 33(3), 701-711. https://doi.org/10.1007/s10706-015-9852-1
  10. Foti, S., Comina, C., Boiero, D. and Socco, L.V. (2009), "Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses", Soil Dyn. Earthq. Eng., 29(6), 982-993. https://doi.org/10.1016/j.soildyn.2008.11.004
  11. Ganji, V., Gucunski, N. and Nazarian, S. (1998), "Automated inversion procedure for spectral analysis of surface waves", J. Geotech. Geoenviron. Eng., 124(8), 757-770. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(757)
  12. Gucunski, N. and Woods, R.D. (1992), "Numerical simulation of the SASW test", Soil Dyn. Earthq. Eng., 11(4), 213-227. https://doi.org/10.1016/0267-7261(92)90036-D
  13. Gucunski, N., Ganji, V. and Maher, M.H. (1996), "Effects of obstacles on rayleigh wave dispersion obtained from the SASW test", Soil Dyn. Earthq. Eng., 15(4), 223-231. https://doi.org/10.1016/0267-7261(96)00001-2
  14. Haskell, N.A. (1953), "The dispersion of surface waves on multilayered media", Bull. Seis. Soc. Am., 43(1), 17-34.
  15. Hebeler, G.L. (2001), "Site characterization in Shelby County, Tennessee using advanced surface wave methods", M.S. Dissertation, Georgia Institute of Technology, Atlanta, Georgia, U.S.A.
  16. Jakka, R.S., Roy, N. and Wason, H.R. (2014), "Implications of surface wave data measurement uncertainty on seismic ground response analysis", Soil Dyn. Earthq. Eng., 61, 239-245.
  17. Kausel, E. and Roesset, J.M. (1981), "Stiffness matrices for layered soils", Bull. Seis. Soc. Am., 71(6), 1743-1761.
  18. Knopoff, L. (1964), "A matrix method for elastic wave problems", Bull. Seis. Soc. Am., 54(1), 431-438.
  19. Lomax, A.J. and Sneider, R. (1994), "Finding sets of acceptable solutions with a genetic algorithm with application to surface wave group dispersion in Europe", Geophys. Res. Lett., 21(24), 2617-2620. https://doi.org/10.1029/94GL02635
  20. Louie, J.N. (2001), "Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays", Bull. Seis. Soc. Am., 91(2), 347-364. https://doi.org/10.1785/0120000098
  21. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-878.
  22. Nazarian, S., Stokoe, K.H.. and Hudson, W.R. (1983), "Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems", Trans. Res. Rec., 930, 38-45.
  23. Park, C.B., Miller, R.D. and Xia, J. (1999), "Multi-channel analysis of surface waves", Geophys., 64(3), 800-808. https://doi.org/10.1190/1.1444590
  24. PLAXIS Manual (2012), Validation and Verification.
  25. Roberts, J. and Asten, M. (2008), "A study of near source effects in arraybased (SPAC) microtremor surveys", Geophys. J., 174(1), 159-177. https://doi.org/10.1111/j.1365-246X.2008.03729.x
  26. Roy, N., Jakka, R.S. and Wason, H.R. (2013), "Effect of surface wave inversion non- uniqueness on 1-D seismic ground response analysis", Nat. Hazards, 68(2), 1141-1153. https://doi.org/10.1007/s11069-013-0677-z
  27. Sambridge, M. (1999), "Geophysical inversion with a neighbourhood algorithm I. Searching a parameter space", Geophys. J., 138(3), 727-746. https://doi.org/10.1046/j.1365-246x.1999.00900.x
  28. Sen, M.K. and Stoffa, P.L. (1991), "Nonlinear one-dimensional seismic waveform inversion using simulated annealing", Geophys., 56(10), 1624-1638. https://doi.org/10.1190/1.1442973
  29. Strobbia, C. and Foti, S. (2006), "Multi-offset phase analysis of surface wave data (MOPA)", J. Appl. Geophys., 59(4), 300-313. https://doi.org/10.1016/j.jappgeo.2005.10.009
  30. Socco, L.V. and Strobbia, C. (2004), "Surface-wave method for near-surface characterization: A tutorial", Near Surf. Geophys., 2(4), 165-185.
  31. Thomson, W.T. (1950), "Transmission of elastic waves through a stratified solid medium", J. Appl. Phys., 21(1), 89-93. https://doi.org/10.1063/1.1699629
  32. Tokimatsu, S., Tamura, H. and Kojima, H. (1992), "Effects of multiple modes on rayleigh wave dispersion characteristics", J. Geotech. Eng., 118(10), 1529-1543. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:10(1529)
  33. Vignoli, G. and Cassiani, G. (2010), "Identification of lateral discontinuities via multi-offset phase analysis of surface wave data", Geophys. Prosp., 58(3), 389-413. https://doi.org/10.1111/j.1365-2478.2009.00838.x
  34. Wathelet, M., Jongmans, D., Ohrnberger, M. and Bonnefoy-Claudet, S. (2008), "Array performances for ambient vibrations on a shallow structure and consequences over vs inversion", J. Seis., 12(1), 1-19. https://doi.org/10.1007/s10950-007-9067-x
  35. Xia, J., Miller, R.D. and Park, C.B. (1999), "Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave", Geophys., 64(3), 691-700. https://doi.org/10.1190/1.1444578
  36. Yoon, S. and Rix, G.J. (2009), "Near-field effects on array-based surface wave methods with active sources", J. Geotech. Geoenviron. Eng., 135(3), 399-406. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(399)
  37. Zywicki, D.J. (1999), "Advanced signal processing methods applied to engineering analysis of seismic surface waves", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, Georgia, U.S.A.