References
- Artar, M. (2016). "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., 22(4), 733-744. https://doi.org/10.12989/scs.2016.22.4.733
- Chen, J.C. and Garba, J.A. (1988), "On-orbit damage assessment for large space structures", AIAA J., 26(9), 1119-1126. https://doi.org/10.2514/3.10019
- Chiang, D.Y and Lai, W.Y. (1999), "Structural damage detection using the simulated evolution method", AIAA J., 37(10), 1331-1333. https://doi.org/10.2514/2.607
- Cury, A.A., Borges, C.C. and Barbosa F.S. (2011), "A two-step technique for damage assessment using numerical and experimental vibration data", Struct. Health Monit., 10(4), 417-428. https://doi.org/10.1177/1475921710379513
- Deraemaeker, A., Reynders, E., De Roeck, G. and Kullaa, J. (2008), "Vibration-based structural health monitoring using output-only measurements under changing environment", Mech. Syst. Signal Pr., 22(1), 34-56. https://doi.org/10.1016/j.ymssp.2007.07.004
- Dizangian, B. and Ghasemi, M.R. (2015), "A fast decoupled reliability-based design optimization of structures using Bspline interpolation curves", J. Braz. Soc. Mech. Sci. Eng., 38(6), 1817-1829.
- Dizangian, B. and Ghasemi, M.R. (2015), "Ranked-based sensitivity analysis for size optimization of structures", J. Mech. Design, 137(12), 121402. https://doi.org/10.1115/1.4031295
- Fugate, M.L., Sohn, H. and Farrar, C.R. (2001), "Vibration-based damage detection using statistical process control", Mech. Syst. Signal Pr., 15(4), 707-721. https://doi.org/10.1006/mssp.2000.1323
- Ghasemi, M.R. and Varaee, H. (2016), "A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm", Eng. Comput., 33(3), 477-496.
- Ghodrati Amiri, G., Hosseinzadeh, A.Z., Bagheri, A. and Koo, K.Y. (2013), "Damage prognosis by means of modal residual force and static deflections obtained by modal flexibility based on the diagonalization method", Smart Mater. Struct., 22(7),75032. https://doi.org/10.1088/0964-1726/22/7/075032
- Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), "Design of steel frames by an enhanced moth-flame optimization algorithm", Steel Compos. Struct., 24(1), 129-140. https://doi.org/10.12989/scs.2017.24.1.129
- Guo, H.Y. and Li, Z.L. (2009), "A two-stage method to identify structural damage sites and extents by using evidence theory and micro-search genetic algorithm", Mech. Syst. Signal Pr., 23(3), 769-782. https://doi.org/10.1016/j.ymssp.2008.07.008
- Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civil Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
- Jiang, S.F., Zhang, C.M. and Zhang, S. (2011), "Two-stage structural damage detection using fuzzy neural networks and data fusion techniques" , Exp. Syst. Appl., 38(1), 511-519. https://doi.org/10.1016/j.eswa.2010.06.093
- Kang, F. and Li, J. (2016), "Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes", J. Comput. Civil Eng., 30(3), 04015040. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000514
- Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050
- Kang, F., Li, J.S. and Li, J.J. (2016), "System reliability analysis of slopes using least squares support vector machines with particle swarm optimization" , Neurocomputing, 209, 46-56. https://doi.org/10.1016/j.neucom.2015.11.122
- Meruane, V. and Heylen, W. (2011), "An hybrid real genetic algorithm to detect structural damage using modal properties", Mech. Syst. Signal Pr., 25(5), 1559-1573. https://doi.org/10.1016/j.ymssp.2010.11.020
- Messina, A., Williams, E.J. and Contursi, T. (1998), "Structural damage detection by a sensitivity and statistical-based method", J. Sound Vib., 216(5), 791-808. https://doi.org/10.1006/jsvi.1998.1728
- Naseralavi, S.S., Salajegheh, E., Salajegheh, J. and Fadaee, M.J. (2012), "Detection of damage in cyclic structures using an eigenpair sensitivity matrix", Comput. Struct., 110, 43-59.
- Nicknam, A. and Hosseini, M.H. (2012), "Structural damage localization and evaluation based on modal data via a new evolutionary algorithm", Arch. Appl. Mech., 82(2), 191-203. https://doi.org/10.1007/s00419-011-0548-6
- Nobahari, M. and Seyedpoor, S.M. (2011),"Structural damage detection using an efficient correlation-based index and a modified genetic algorithm", Math. Comput. Model., 53(9), 1798-1809. https://doi.org/10.1016/j.mcm.2010.12.058
- Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "A novel heuristic search algorithm for optimization with application to structural damage identification", Smart Struct. Syst., 19(4), 449-461 https://doi.org/10.12989/sss.2017.19.4.449
- Perera, R. and Torres, R. (2006), "Structural damage detection via modal data with genetic algorithms", J. Struct. Eng., 132(9), 1491-1501. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1491)
- Sandesh, S. and Shankar, K. (2010), "Application of a hybrid of particle swarm and genetic algorithm for structural damage detection", Inverse Problems in Science and Engineering; Formerly Inverse Problems in Engineering, 18(7), 997-1021. https://doi.org/10.1080/17415977.2010.500381
- Seyedpoor, S.M. (2012), "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization", Int. J. Nonlinear Mech., 47(1), 1-8.
- Seyedpoor, S.M. and Montazer, M. (2016), "A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm", Smart Struct. Syst., 17(2), 347-361. https://doi.org/10.12989/sss.2016.17.2.347
- Shih, H.W., Thambiratnam, D.P. and Chan, T.H. (2009), "Vibration based structural damage detection in flexural members using multi-criteria approach", J. Sound Vib., 323(2) 645-661. https://doi.org/10.1016/j.jsv.2009.01.019
- Shirazi, M.N., Mollamahmoudi, H. and Seyedpoor, S.M. (2014), "Structural damage identification using an adaptive multi-stage optimization method based on a modified particle swarm algorithm", J. Optimiz. Theory Appl., 160(3), 1009-1019. https://doi.org/10.1007/s10957-013-0316-6
- Stolpe, M. (2016), "Truss optimization with discrete design variables: a critical review", Struct. Multidiscip. O., 53(2), 349-374. https://doi.org/10.1007/s00158-015-1333-x
- Varaee, H. and Ghasemi, M.R. (2016), "Engineering optimization based on ideal gas molecular movement algorithm", Eng. Comput., 33(1), 71-93.
- Xiang, J. and Liang, M. (2012), "A two-step approach to multidamage detection for plate structures", Eng. Fract. Mech., 91, 73-86. https://doi.org/10.1016/j.engfracmech.2012.04.028
- Yam, L.H., Yan, Y.J. and Jiang, J.S. (2003), "Vibration-based damage detection for composite structures using wavelet transform and neural network identification", Compos. Struct., 60(4), 403-412. https://doi.org/10.1016/S0263-8223(03)00023-0
- Yan, Y.J., Cheng, L., Wu, Z.Y and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
- Yang, Q.W. and Liu, J.K. (2007), "Structural damage identification based on residual force vector", J. Sound Vib., 305(1), 298-307. https://doi.org/10.1016/j.jsv.2007.03.033
- Yun, G.J., Ogorzalek, K.A., Dyke, S.J. and Song, W. (2009), "A two-stage damage detection approach based on subset selection and genetic algorithms", Smart Struct. Syst., 5(1), 1-21. https://doi.org/10.12989/sss.2009.5.1.001
- Zimmerman, D.C. and Kaousk, M. (1994), "Structural damage detection using a minimum rank update theory", J. Vib. Acoust., 116(2), 222-231. https://doi.org/10.1115/1.2930416
Cited by
- Crack identification in Timoshenko beam under moving mass using RELM vol.28, pp.3, 2017, https://doi.org/10.12989/scs.2018.28.3.279
- Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461
- A new procedure for post-buckling analysis of plane trusses using genetic algorithm vol.40, pp.6, 2017, https://doi.org/10.12989/scs.2021.40.6.817