• Title/Summary/Keyword: residual force vector

Search Result 13, Processing Time 0.024 seconds

Structural damage detection based on residual force vector and imperialist competitive algorithm

  • Ding, Z.H.;Yao, R.Z.;Huang, J.L.;Huang, M.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.709-717
    • /
    • 2017
  • This paper develops a two-stage method for structural damage identification by using modal data. First, the Residual Force Vector (RFV) is introduced to detect any potentially damaged elements of structures. Second, data of the frequency domain are used to build up the objective function, and then the Imperialist Competitive Algorithm (ICA) is utilized to estimate damaged extents. ICA is a heuristic algorithm with simple structure, which is easy to be implemented and it is effective to deal with high-dimension nonlinear optimization problem. The advantages of this present method are: (1) Calculation complexity can be decreased greatly after eliminating many intact elements in the first step. (2) Robustness, ICA ensures the robustness of the proposed method. Various damaged cases and different structures are investigated in numerical simulations. From these results, anyone can point out that the present algorithm is effective and robust for structural damage identification and is also better than many other heuristic algorithms.

Truss structure damage identification using residual force vector and genetic algorithm

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.485-496
    • /
    • 2017
  • In this paper, damage detection has been introduced as an optimization problem and a two-step method has been proposed that can detect the location and severity of damage in truss structures precisely and reduce the volume of computations considerably. In the first step, using the residual force vector concept, the suspected damaged members are detected which will result in a reduction in the number of variables and hence a decrease in the search space dimensions. In the second step, the precise location and severity of damage in the members are identified using the genetic algorithm and the results of the first step. Considering the reduced search space, the algorithm can find the optimal points (i.e. the solution for the damage detection problem) with less computation cost. In this step, the Efficient Correlation Based Index (ECBI), that considers the structure's first few frequencies in both damaged and healthy states, is used as the objective function and some examples have been provided to check the efficiency of the proposed method; results have shown that the method is innovatively capable of detecting damage in truss structures.

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

A fast damage detecting technique for indeterminate trusses

  • Naderi, Arash;Sohrabi, Mohammad Reza;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.585-594
    • /
    • 2020
  • Detecting the damage of indeterminate trusses is of major importance in the literature. This paper proposes a quick approach in this regard, utilizing a precise mathematical approach based on Finite Element Method. Different to a general two-step method defined in the literature essentially based on optimization approach, this method consists of three steps including Damage-Suspected Element Identification step, Imminent Damaged Element Identification step, and finally, Damage Severity Detection step and does not need any optimizing algorithm. The first step focuses on the identification of damage-suspected elements using an index based on modal residual force vector. In the second step, imminent damage elements are identified among the damage-suspected elements detected in the previous step using a specific technique. Ultimately, in the third step, a novel relation is derived to calculate the damage severity of each imminent damaged element. To show the efficiency and quick function of the proposed method, three examples including a 25-bar planar truss, a 31-bar planar truss, and a 52-bar space truss are studied; results of which indicate that the method is innovatively capable of suitably detecting, for indeterminate trusses, not only damaged elements but also their individual damage severity by carrying out solely one analysis.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

Regularization Method by Subset Selection for Structural Damage Detection (구조손상 탐색을 위한 부 집합 선택에 의한 정규화 방법)

  • Yun, Gun-Jin;Han, Bong-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-82
    • /
    • 2008
  • In this paper, a new regularization method by parameter subset selection method is proposed based on the residual force vector for damage localization. Although subset selection using the fundamental modal characteristics as a residual function has been successful in detecting a single damage location, this method seems to have limited capabilities in the detection of multiple damage locations and typically requires cumbersome weighting values. The method is presented herein and considers cases in which damage detection must be achieved using incomplete measurements of the structural responses. Model expansion is incorporated to deal with this challenge. The unique advantage of employing the new regularization method is that it can reliably identify multiple damage locations. Through an illustrative example, the proposed damage detection method is demonstrated to be a reliable tool for identifying multiple damage locations for a planar truss structure.

Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season (서해 천수만 중앙부의 하계 조류/비조류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.53-64
    • /
    • 2013
  • This study analyzed the ADCP records along with wind by KMA and discharge records at Seosan A-, B-district tide embankment by KRC for 33 days obtained in the Chunsu Bay, Yellow Sea, Korea spanning from July 29 to August 30, 2010. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, complex correlation, progressive vector diagram and cumulative curves to understand the tidal and sub-tidal current characteristics caused by local wind and discharge effect. Observed current speed ranges from -30 to 40 (cm/sec), with standard deviation from 1.7 (cm/sec) at bottom to 18.7 (cm/sec) at surface. According to the harmonic analysis results, the tidal current direction show NNW-SSE. The magnitudes of semi-major axes range from 9.4 to 14.8 (cm/sec) for M2 harmonic constituent and from 4.4 to 7.0 (cm/sec) for S2, respectively. And the magnitudes of semi-minor axes range from 0.1 to 0.5 (cm/sec) for M2 and from 0.4 to 1.4 (cm/sec) for S2, respectively. In the spectral analysis results in the frequency domain, we found 3~6 significant spectral peaks for band-passed wind and residual current of all depth. These peak periods represent various periodicities ranging from 2 to 8 (days). In the coherency analysis results between band-passed wind and residual current of all depth, several significant coherencies could be resolved in 3~5 periodicities within 2.8 (days). Highest coherency peak occurred at 4.6 (day) with 1.2-day phase lag of discharge to band-passed residual current. The progressive vector of wind and residual current travelled to northward at all layers, and the travel distance at middle layer was greater than surface layer distance. The Northward residual current was caused by a seasonal southern wind, and the density-driven current formed by fresh water input effected southward residual current. The sub-tidal current characteristics is determined by seasonal wind force and fresh water inflow in the Chunsu Bay, Yellow Sea, Korea.

Efficiency Evaluation of Nozawa-Style Black Light Trap for Control of Anopheline Mosquitoes

  • Lee, Hee-Il;Seo, Bo-Youl;Shin, E-Hyun;Burkett, Douglas A.;Lee, Jong-Koo;Shin, Young-Hack
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.159-165
    • /
    • 2009
  • House-residual spraying and insecticide-treated bed nets have achieved some success in controlling anthropophilic and endophagic vectors. However, these methods have relatively low efficacy in Korea because Anopheles sinensis, the primary malaria vector, is highly zoophilic and exophilic. So, we focused our vector control efforts within livestock enclosures using ultraviolet black light traps as a mechanical control measure. We found that black light traps captured significantly more mosquitoes at 2 and 2.5 m above the ground (P<0.05). We also evaluated the effectiveness of trap spacing within the livestock enclosure. In general, traps spaced between 4 and 7m apart captured mosquitoes more efficiently than those spaced closer together (P>0.05). Based on these findings, we concluded that each black light trap in the livestock enclosures killed 7,586 female mosquitoes per trap per night during the peak mosquito season (July-August). In May-August 2003, additional concurrent field trials were conducted in Ganghwa county. We got 74.9% reduction (P<0.05) of An. sinensis in human dwellings and 61.5% reduction (P>0.05) in the livestock enclosures. The black light trap operation in the livestock enclosures proved to be an effective control method and should be incorporated into existing control strategies in developed countries.