Involutive Micanorm Logics with the n-potency axiom

N-멱등 공리를 갖는 누승적 미카놈 논리

  • Yang, Eunsuk (Department of Philosophy & Institute of Critical Thinking and Writing, Chonbuk National University)
  • 양은석 (전북대학교 철학과, 비판적사고와논술연구소)
  • Received : 2017.03.03
  • Accepted : 2017.06.05
  • Published : 2017.06.30

Abstract

In this paper, we deal with some axiomatic extensions of the involutive micanorm logic IMICAL. More precisely, first, the two involutive micanorm-based logics $P_nIMICAL$ and $FP_nIMICAL$ are introduced. Their algebraic structures are then defined, and their corresponding algebraic completeness is established. Next, standard completeness is established for $FP_nIMICAL$ using construction in the style of Jenei-Montagna.

이 글에서 우리는 누승적 미카놈 논리 IMICAL의 몇몇 공리적 확장 체계를 다룬다. 보다 구체적으로, 먼저 누승적 미아놈에 바탕을 두 논리 체계 $P_nIMIAL$, $FP_nIMIAL$을 소개한다. 각 체계에 상응하는 대수적 구조를 정의한 후, 이들 체계가 대수적으로 완전하다는 것을 보인다. 다음으로, 이 논리 체계들 중 $FP_nIMICAL$가 표준적으로 완전하다는 것 즉 단위 실수 [0,1]에서 완전하다는 것을 제네이-몬테그나 방식의 구성을 사용하여 보인다.

Keywords

References

  1. Ciabattoni, A., Esteva, F., and Godo, L. (2002), "T-norm based logics with n-contraction", Neural Network World, 12, pp. 441-453.
  2. Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
  3. Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbol. Logic, 12, pp. 394-423.
  4. Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", Mathematical Fuzzy Logic, P. Hajek (Ed.), Springer.
  5. Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 103-207.
  6. Esteva, F., Gispert, L., Godo, L., and Montagna, F. (2002), "On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic", Studia Logica, 71, pp. 393-420.
  7. Hajek, P. (1998), Metamathematics of Fuzzy Logic, Amsterdam, Kluwer.
  8. Horcik, R. (2011), Algebraic semantics: semilinear FL-algebras, Handbook of Mathematical Fuzzy Logic, 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 283-353.
  9. Jenei, S. and Montagna, F. (2002), "A Proof of Standard completeness for Esteva and Godo's Logic MTL", Studia Logica, 70, pp. 183-192. https://doi.org/10.1023/A:1015122331293
  10. Kowalski, T. (2004), "Semisimplicity, EDPC and discriminator varieties of residuated lattices", Studia Logica, 77, pp. 255-265. https://doi.org/10.1023/B:STUD.0000037129.58589.0c
  11. Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
  12. Wang, S. (2012), "Uninorm logic with the n-potency axiom", Fuzzy Sets and Systems, 205, pp. 116-126. https://doi.org/10.1016/j.fss.2012.04.017
  13. Wang, S. (2013), "Involutive uninorm logic with the n-potency axiom", Fuzzy Sets and Systems, 218, pp. 1-23. https://doi.org/10.1016/j.fss.2012.09.009
  14. Wang, S. (2015), "Density elimination for semilinear substructural logics", Submitted.
  15. Yang, E. (2009), "On the standard completeness of an axiomatic extension of the uninorm logic", Korean Journal of Logic, 12 (2), pp. 115-139.
  16. Yang, E. (2013), "Standard completeness for MTL", Korean Journal of Logic, 16 (3), pp. 437-452.
  17. Yang, E. (2014), "An Axiomatic Extension of the Uninorm Logic Revisited", Korean Journal of Logic, 17 (2), pp. 323-348.
  18. Yang, E. (2015a), "Weakening-free, non-associative fuzzy logics: Micanorm-based logics", Fuzzy Sets and Systems, 276, pp. 43-58. https://doi.org/10.1016/j.fss.2014.11.020
  19. Yang, E. (2015b), "An Axiomatic Extension of the involutive micanorm logic Revisited", Korean Journal of Logic, 19(2), pp. 197-215.