References
- Ciabattoni, A., Esteva, F., and Godo, L. (2002), "T-norm based logics with n-contraction", Neural Network World, 12, pp. 441-453.
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
- Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbol. Logic, 12, pp. 394-423.
- Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", Mathematical Fuzzy Logic, P. Hajek (Ed.), Springer.
- Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 103-207.
- Esteva, F., Gispert, L., Godo, L., and Montagna, F. (2002), "On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic", Studia Logica, 71, pp. 393-420.
- Hajek, P. (1998), Metamathematics of Fuzzy Logic, Amsterdam, Kluwer.
- Horcik, R. (2011), Algebraic semantics: semilinear FL-algebras, Handbook of Mathematical Fuzzy Logic, 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 283-353.
- Jenei, S. and Montagna, F. (2002), "A Proof of Standard completeness for Esteva and Godo's Logic MTL", Studia Logica, 70, pp. 183-192. https://doi.org/10.1023/A:1015122331293
- Kowalski, T. (2004), "Semisimplicity, EDPC and discriminator varieties of residuated lattices", Studia Logica, 77, pp. 255-265. https://doi.org/10.1023/B:STUD.0000037129.58589.0c
- Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
- Wang, S. (2012), "Uninorm logic with the n-potency axiom", Fuzzy Sets and Systems, 205, pp. 116-126. https://doi.org/10.1016/j.fss.2012.04.017
- Wang, S. (2013), "Involutive uninorm logic with the n-potency axiom", Fuzzy Sets and Systems, 218, pp. 1-23. https://doi.org/10.1016/j.fss.2012.09.009
- Wang, S. (2015), "Density elimination for semilinear substructural logics", Submitted.
- Yang, E. (2009), "On the standard completeness of an axiomatic extension of the uninorm logic", Korean Journal of Logic, 12 (2), pp. 115-139.
- Yang, E. (2013), "Standard completeness for MTL", Korean Journal of Logic, 16 (3), pp. 437-452.
- Yang, E. (2014), "An Axiomatic Extension of the Uninorm Logic Revisited", Korean Journal of Logic, 17 (2), pp. 323-348.
- Yang, E. (2015a), "Weakening-free, non-associative fuzzy logics: Micanorm-based logics", Fuzzy Sets and Systems, 276, pp. 43-58. https://doi.org/10.1016/j.fss.2014.11.020
- Yang, E. (2015b), "An Axiomatic Extension of the involutive micanorm logic Revisited", Korean Journal of Logic, 19(2), pp. 197-215.