참고문헌
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
- Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbol. Logic, 12, pp. 394-423.
- Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", Mathematical Fuzzy Logic, P. Hajek (Ed.), Springer.
- Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 103-207.
- Esteva, F., Gispert, L., Godo, L., and Montagna, F. (2002), "On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic", Studia Logica, 71, pp. 393-420.
- Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007), Residuated lattices: an algebraic glimpse at substructural logics, Amsterdam, Elsevier.
- Hajek, P. (1998), Metamathematics of Fuzzy Logic, Amsterdam, Kluwer.
- Horcik, R. (2011), Algebraic semantics: semilinear FL-algebras, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 283-353.
- Jenei, S. and Montagna, F. (2002), "A Proof of Standard completeness for Esteva and Godo's Logic MTL", Studia Logica, 70, pp. 183-192. https://doi.org/10.1023/A:1015122331293
- Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
- Yang, E. (2009), "On the standard completeness of an axiomatic extension of the uninorm logic", Korean Journal of Logic, 12/2, pp. 115-139.
- Yang, E. (2013), "Standard completeness for MTL", Korean Journal of Logic, 16/3, pp. 437-452.
- Yang, E. (2014), "An Axiomatic Extension of the Uninorm Logic Revisited", Korean Journal of Logic, 17/2, pp. 323-348.
- Yang, E. (2015), "Weakening-free, non-associative fuzzy logics: micanorm-based logics", Fuzzy Sets and Systems, 276, pp. 43-58. https://doi.org/10.1016/j.fss.2014.11.020
- Yang, E. (2016), "Basic substructural core fuzzy logics and their extensions: Mianorm-based logics", Fuzzy Sets and Systems, 301, pp. 1-18. https://doi.org/10.1016/j.fss.2015.09.007
- Yang, E. (2017a), "Involutive basic substructural core fuzzy logics: Involutive mianorm-based logics", Fuzzy Sets and Systems, 320, pp. 1-16. https://doi.org/10.1016/j.fss.2017.03.013
- Yang, E. (2017b), "Involutive Micanorm Logics with the n-potency axiom", Korean Journal of Logic, 20/2, pp. 273-292.