References
- Adewuyi, Y.G., 2001, Sonochemistry: Environmental science and engineering applications, Ind. Eng. Chem. Res., 40, 4681-4715. https://doi.org/10.1021/ie010096l
- Asakura, Y., Nishida, T., Matsuoka, T., and Koda, S., 2008, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors, Ultrason. Sonochem., 15, 244-250. https://doi.org/10.1016/j.ultsonch.2007.03.012
- Ashokkumar, M., 2011, The characterization of acoustic cavitation bubbles - An overview, Ultrason. Sonochem., 18, 864-872. https://doi.org/10.1016/j.ultsonch.2010.11.016
- Chiemi, H., Daisuke, K., Hideyuki, M., Tomoki, T., Chiaki, K., Katsuto, O., and Atsushi, S., 2013, Effect of particle addition on degradation rate of methylene blue in an ultrasonic field, Jpn. J. Appl. Phys., 52, 07HE11. https://doi.org/10.7567/JJAP.52.07HE11
- Kobayashi, D., Matsumoto, H., and Kuroda, C., 2008, Effect of reactor's positions on polymerization and degradation in an ultrasonic field, Ultrason. Sonochem., 15, 251-256. https://doi.org/10.1016/j.ultsonch.2007.04.001
- Koda, S., Kimura, T., Kondo, T., and Mitome, H., 2003, A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrason. Sonochem., 10, 149-156. https://doi.org/10.1016/S1350-4177(03)00084-1
-
Kubo, M., Matsuoka, K., Takahashi, A., Shibasaki-Kitakawa, N., and Yonemoto, T., 2005, Kinetics of ultrasonic degradation of phenol in the presence of
$TiO_2$ particles, Ultrason. Sonochem., 12, 263-269. https://doi.org/10.1016/j.ultsonch.2004.01.039 - Lee, K., Park, E., and Seong, W., 2009, High frequency measurements of sound speed and attenuation in water-saturated glass-beads of varying size, J. Acoust. Soc. Am., 126, EL28-EL33. https://doi.org/10.1121/1.3153004
- Lim, M., Son, Y., and Khim, J., 2011, Frequency effects on the sonochemical degradation of chlorinated compounds, Ultrason. Sonochem., 18, 460-465. https://doi.org/10.1016/j.ultsonch.2010.07.021
- Ptrier, C., Combet, E., and Mason, T., 2007, Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds, Ultrason. Sonochem., 14, 117-121. https://doi.org/10.1016/j.ultsonch.2006.04.007
- Son, Y., 2017, Simple design strategy for bath-type high-frequency sonoreactors, Chem. Eng. J., 328, 654-664. https://doi.org/10.1016/j.cej.2017.07.012
- Son, Y., Lim, M., Ashokkumar, M., and Khim J., 2011, Geometric optimization of sonoreactors for the enhancement of sonochemical activity, J. Phys. Chem. C, 115, 4096-4103. https://doi.org/10.1021/jp110319y
- Son, Y., Lim, M., Khim, J., and Ashokkumar, M., 2012, Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor, Ultrason. Sonochem., 19, 16-21. https://doi.org/10.1016/j.ultsonch.2011.06.001
- Torres, R.A., Petrier, C., Combet, E., Moulet, F., and Pulgarin, C., 2006, Bisphenol A Mineralization by Integrated Ultrasound-UV-Iron (II) Treatment, Environ. Sci. Technol., 41, 297-302.
- Tuziuti, T., Yasui, K., Sivakumar, M., Iida, Y., and Miyoshi, N., 2005, Correlation between Acoustic Cavitation Noise and Yield Enhancement of Sonochemical Reaction by Particle Addition, J. Phys. Chem. A, 109, 4869-4872. https://doi.org/10.1021/jp0503516
- Zagzebski, J.A., 1996, Essentials of Ultrasound Physics, Mosby, St. Louis, Missouri, 7 p.