DOI QR코드

DOI QR Code

섬진강 하구역에서 염분구배에 따른 식물플랑크톤 활성도 평가

Assessment of Phytoplankton Viability Along the Salinity Gradient in Seomjin River Estuary, Korea

  • 임영균 (충남대학교 해양환경과학과) ;
  • 백승호 (한국해양과학기술원 남해연구소)
  • Lim, Youngkyun (Department of Oceanography and Ocean Environmental Sciences, Chungnam National University) ;
  • Baek, Seung Ho (South Sea Institute, Korea Institute of Ocean Science & Technology)
  • 투고 : 2017.05.23
  • 심사 : 2017.08.28
  • 발행 : 2017.08.31

초록

본 연구는 섬진강 하구역에서 2017년 2월 대조기 만조와 간조, 3월 소조기 간조 동안 염분 구배에 따른 식물플랑크톤 생리활성도를 평가하였다. 또한 2월 대조기 조사에서 나타난 특이적인 pH 변화특성을 파악하기 위해 추가적인 재현실험을 병행하였다. 현장조사 결과에 의하면, 만조와 간조에 수층 혼합에 의한 수직적인 염분의 차이는 미미하였지만, 담수역으로 향할수록 염분이 낮아져 수평적인 염분구배가 뚜렷하였다. 염분과 영양염(질산염+아질산염: R=0.997, p<0.001; 규산염: R=0.979, p<0.001)과의 강한 음의 상관관계를 보였고, 이는 담수 기원의 질소와 규소의 높은 농도의 영양염류가 해수와 혼합되는 과정에서 희석되고 있다는 것을 의미한다. 반면, 인산염농도는 염분이 15 psu를 기점으로 고염분의 유역에서는 상대적으로 높은 농도가 관찰되었고, 이는 수심이 얕은 광양만의 퇴적물이 조석에 의한 수층혼합으로 재부유되어 인산염 재용출로 인해 수층에 일정량 기여하였다는 것을 의미한다. 섬진강 하구역에서 동계 2월과 3월 우점한 식물플랑크톤은 Eucampia zodiacus로 나타났고, 그들은 전체 군집의 70% 이상을 차지하였다. 특히, 3월 생물 활성도를 평가한 결과, 염분과 chlorophyll a(R=0.82)뿐만 아니라 active chlorophyll a(R=0.80)과 강한 양의 상관관계를 보였다(p<0.001). 특히 담수의 영향을 강하게 받는 상류 정점에서는 해수종 규조류가 염분충격으로 생리활성을 잃어 최대 75 % 사멸율을 기록하였다. 2월 대조기 조사에서는 상대적으로 형광값이 높은 정점에서 pH가 높게 나타났고, 이는 높은 밀도로 우점한 규조류의 광합성 작용으로 $CO_2$가 다량 흡수되어 pH 상승효과를 가져온 것으로 판단되었다. 또한 2월 현장식물플랑크톤 군집을 농축하여 저염분 환경에서 생물농도구배에 따른 pH 변화를 파악한 결과, 염분충격에 의해 사멸한 식물플랑크톤의 영향으로 광합성 활성도의 감소를 가져왔고, 우점 규조류의 사멸로 인해 박테리아가 현저하게 증식하였다. 그 결과 박테리아가 규조류를 생분해하는 과정에서 $CO_2$가 발생하여 pH 의 감소를 유발하였다. 결과적으로 섬진강하구역에서는 염분 구배에 따른 생물의 광합성 활성도의 차이와 생물사멸이 뚜렷하게 관찰되었고, 이는 pH의 증감을 유발하는 중요한 인자로 파악되었다.

We evaluated the viability of phytoplankton along the salinity gradient in the flood and ebb tides of spring tide of February and the ebb tide of neap tide of March 2017 in the Seomjin River Estuary. Additional laboratory experiments were also conducted to determine the reason of the pH changes along the salinity gradient using the field natural sample in February. In field, saltwater was well mixed at downstream vertically and the salinity gradient was horizontally appeared toward upstream of freshwater zone. There were strong negative correlations between salinity and nutrient (nitrate + nitrite R=0.99, p<0.001, and silicate R=0.98, p<0.001), implying that those two nutrients of freshwater origin were gradually diluted with mixing the saltwater. On the other hands, relatively high phosphate concentration was kept in the stations of saltwater over 15 psu, indicating that it was caused by resuspended sediments of Gwangyang Bay and downstream by tidal water mixing.Among phytoplankton community structure in winter, Eucampia zodiacus have occupied to be c.a. 70 % in the most stations. Based on the field survey results for survivability of phytoplankton by phytoPAM instrument, there was positive correlations between salinity and chlorophyll a (R=0.82, p<0.001) and, salinity and active chlorophyll a (R=0.80, p<0.001), implying that the dominant marine diatom species may have significantly damaged in low salinity conditions of upstream. Also, maximum mortality rate of phytoplankton caused by low salinity shock was appered to be 75% in the upstream station. In particular, the pH in spring tides of February had tended to increase with high phytoplankton accmulated stations, suggesting that it was related with absorption of $CO_2$ by the photosynthesis of dominant diatom. In laboratory experiments, phytoplankton mass-mortality caused by low salinity shock was also occurred, which is confirmed with reducing the photosynthetic electron transport activity. Following the phytoplankton mass-mortality, bacteria abundance was significantly increased in 24 hours. As a result, the mass-proliferating bacteria can produce the $CO_2$ in the process of biodegradation of diatoms, which can lead to pH decrease. Therefore, marine phytoplankton species was greatly damaged in freshwater mixing area, depending on along the salinity gradient that was considered to be an important role in elevating and reducing of pH in Seomjin River Estuary.

키워드

참고문헌

  1. Bae, S. W., D. Kim, Y. O. Kim, C. H. Moon and S. H. Baek(2014), The Influences of Additional Nutrients on Phytoplankton Growth and Horizontal Phytoplankton Community Distribution during the Autumn Season in Gwangyang Bay, Korea. Korean Journal of Environmental Biology, 32(1), pp 35-48. https://doi.org/10.11626/KJEB.2014.32.1.035
  2. Baek, S. H., D. S. Kim, M. H. Son, S. M. Yun and Y. O. Kim(2015), Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea, Estuarine, Coastal and Shelf Science 163, pp 265-278. https://doi.org/10.1016/j.ecss.2014.12.035
  3. Baek, S. H., J. Y. Seo, J. W. Choi(2015), Growth characteristics and distribution pattern of a brackish water clam, Corbicula Japonica along an estuarine salinity gradient in Seomjin River, Journal of the Korea Academia-Industrial, 16(10), pp 6852-6859. https://doi.org/10.5762/KAIS.2015.16.10.6852
  4. Hurd, D. C.(1983), Physical and chemical properties of siliceousskeletons. In: Aston SR (ed) Silicon geochemistry and biogeochemistry. Academic, London, pp. 187-244.
  5. Jakob, T., U. Schreiber, V. Kirchesch, U. Langner and C. Wilhelm(2005), Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: Performance and methodological limits, Photosynth Res 83, pp. 343-361. https://doi.org/10.1007/s11120-005-1329-2
  6. Kattner, G.(1999), Storage of dissolved inorganic nutrients in seawater: poisoning with mercuric chloride, Marine Chemistry Volume 67, Issues 1-2, pp. 61-66. https://doi.org/10.1016/S0304-4203(99)00049-3
  7. Kim, S. H., C. B. Song, S. H. Kang, D. G. Yang and J. S. Hong(1988), The Distribution of Nutrients at the Cultil1ltion Ground of Laver in Kwangyang Bay, 1986. Ocean Res., 10, pp. 1-8.
  8. Kwon, K. Y., P. G. Lee, C. Park, C. H. Moon and M. O. Park(2001), Biomass and species composition of phytoplankton and zooplankton along the salinity gradients in the Seomjin River estuary, Journal of the Korea Society of Oceanography, 6(2), pp. 93-102.
  9. Lee, J. B., Y. J. Shin, J. H. Lee, Y. M. Choi, D. W. Lee, H. K. Cha(2012), Estimation of potential fishery yield for Corbicula Japonica in the Seomjin River, Korea, The Korean Journal of Malacology. 28, pp. 91-99. https://doi.org/10.9710/kjm.2012.28.2.091
  10. Lee, Y. S., Y. T. Park, K. Y. Kim, Y. K. Choi, P. Y. Lee(2006), Characteristics of Coastal Water Quality after Diatom Blooms Due to Freshwater Inflow, Journal of the Korean Society of Marine Environment & Safety, Vol. 12, No. 2, pp. 75-79.
  11. Lim, K. H., K. S. Jang, I. S. Kim, J. H. Lee and H. C. Shin(2008), The Influence of Water Temperature and Salinity on Filtration Rates of the Hard Clam, Meretrix petechialis, The Korean Journal of Malacology, 24(3), pp. 175-188.
  12. Morris, A. W., R. F. C. Mantoura, A. J. Bale, R. J. M. Howland(1978), Very low salinity regions of estuaries: important sites for chemical and biological reactions, Nature 274, pp. 678-680. https://doi.org/10.1038/274678a0
  13. Muylaert, K., K. Sabbe and W. Vyverman(2009), Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium /The Netherlands), Estuarine, Coastal and Shelf Science, 82(2), pp. 335-340. https://doi.org/10.1016/j.ecss.2009.01.024
  14. Park, M. O., C. H. Moon, S. Y. Kim, S. R. Yang, K. Y. Kwon and Y. W. Lee(2001), The species composition of phytoplankton along the salinity gradients in the Seomjin River estuary in autumn: Comparison of HPLC analysis and microscopic observations, Algae 16(2), pp. 179-188.
  15. Parsons, T. R., M. Takahashi and B. Hargrave(1984), Biological Oceanographic Processes, 3rd ed., Pergamon Press, Oxford, p. 330.
  16. Parsons, T. R., Y. Maita and C. M. Lalli(1984), Amaual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press, Oxford, p. 173.
  17. Valie, I.(1984), Marine ecological processes, Springer-Verlag, New-York, p. 546.
  18. Wu, S., H. Cheng, Y. J. Xu, J. Li and S. Zheng(2016), Decadal changes in bathymetry of the Yangtze River Estuary: Human impacts and potential saltwater intrusion, Estuarine, Coastal and Shelf Science, Volume 182, Part A, pp. 158-169. https://doi.org/10.1016/j.ecss.2016.10.002
  19. Yang, S. Y., H. S. Song, K. C. Kim, C. Park and C. H. Moon(2005), Changes in environmental factors and primary productivity in the Seomjin River estuary, Journal of the Korea Society of Oceanography, 10(3), pp. 164-170.