이차원 소재기반 가스센서 연구 현황

  • Published : 2017.09.30

Abstract

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science 306, 666 (2004) https://doi.org/10.1126/science.1102896
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene", Nature 438, 197 (2005) https://doi.org/10.1038/nature04233
  3. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum hall effect and Berry's phase in graphene" Nature 438, 201 (2005) https://doi.org/10.1038/nature04235
  4. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, "Two-dimensional material nanophotonics" Nature Photon., 8, 899-907 (2014). https://doi.org/10.1038/nphoton.2014.271
  5. A. Allain, J. Kang, K. Banerjee, and A. Kis, "Electrical contacts to two-dimensional semiconductors" Nature Mater. 14, 1195-1205 (2015) https://doi.org/10.1038/nmat4452
  6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacomett, and A. Kis, "Single-layer $MoS_2$ transistors" Nature Nanotech., 6, 147-150 (2011). https://doi.org/10.1038/nnano.2010.279
  7. Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, "Van der Waals heterostructures and devices" Nature Reviews Materials 1, 16042 (2016) https://doi.org/10.1038/natrevmats.2016.42
  8. D. Jena, "Tunneling transistors based on graphene and 2-D crystals", Proceeding of the IEEE 101, 1585-1602(2013). https://doi.org/10.1109/JPROC.2013.2253435
  9. M. Chhowalla, D. Jena, and H. Zhang, "Two-dimensional semiconductors for transistors" Nature Reviews Materials 1, 16052 (2016) https://doi.org/10.1038/natrevmats.2016.52
  10. S. Manzeli, D. Ovchinnikov, D. Padquier, O. V. Yazyev, and A. Kis, "2D transition metal dichalcogenides" Nature Reviews Materials 2, 17033 (2017) https://doi.org/10.1038/natrevmats.2017.33
  11. M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J. E. Mroczkowska, G. Sumanasekera and J. B. Jasinski, "Recent advances in synthesis, properties, and applications of phosphorene" npj 2D Mater. Appl. 1, 5 (2017). https://doi.org/10.1038/s41699-017-0007-5
  12. D. Akinwande, N. Petrone, and J. Hone, "Two-dimensional flexible nanoelectrocnics" Nature Commun. 5:5678 (2014) https://doi.org/10.1038/ncomms6678
  13. F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, "Chemical vaper sensing with monolayer $MoS_2$", Nano Lett. 13, 668-673 (2013). https://doi.org/10.1021/nl3043079
  14. H. Choi, J. S. Choi, J.-S. Kim, J.-H. Choe, K. H. Chung, J.-W. Shin, J. T. Kim, D.-H. Youn, K.-C. Kim, J.-I. Lee, S.-Y. Choi, P. Kim, C.-G. Choi, and Y.-J. Yu, "Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers", Small 10, 3685-3691 (2014) https://doi.org/10.1002/smll.201400434
  15. S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, "Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors" Nature Commun. 6:8632 (2015) https://doi.org/10.1038/ncomms9632
  16. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nature Mater. 6, 652-655 (2007). https://doi.org/10.1038/nmat1967
  17. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. Sheehan, "Reduced graphene oxide molecular sensors" Nano Lett. 8, 3137-3140 (2008) https://doi.org/10.1021/nl8013007
  18. K. Toda, R. Furue, and S. Hayami, "Recent progress in applications of graphene oxide for gas sensing: A review" Analy. Chem. Acta 878, 43-45 (2015) https://doi.org/10.1016/j.aca.2015.02.002
  19. Y. Guo, B. Wu, H. Liu, Y. Ma, Y. Yang, J. Zheng, G. Yu, and Y. Liu, "Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors" Adv. Mater. 23, 4626-4630 (2011) https://doi.org/10.1002/adma.201103120
  20. W. Li, X. Geng, Y. Guo, J. Rong, Y. Gong, L. Wu, X. Zhang, P. Li, J. Xu, G. Cheng, M. Sun, and L. Liu, "Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection" ACS Nano 5, 6955-6961 (2011) https://doi.org/10.1021/nn201433r
  21. L. T. Duy, T. Q. Trung, A. Hanif, S. Siddiqui, E. Roh, W. Lee, and N.-E. Lee, "A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibers with self-assembled reduced graphene oxide" 2D Mater. 4, 025062 (2017) https://doi.org/10.1088/2053-1583/aa6783
  22. Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. C. Johnson, "Intrinsic response of graphene vapor sensors", Nano Lett. 9, 1472-1475 (2009) https://doi.org/10.1021/nl8033637
  23. B. Kumar, K. Min, M. Bashirzadeh, A. B. Farimani, M.-H. Bae, D. Estrada, Y. D. Kim, P. Yasaei, Y. D. Park, E. Pop, N. R. Aluru, and A. Salehi-Khojin, "The role of external defects in chemical sensing of graphene field effect transistors" Nano. Lett. 13, 1962-1968 (2013). https://doi.org/10.1021/nl304734g
  24. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, "Observation of electron-hole puddles in graphene using scanning single-electron transistor" Nature Phys. 4, 144 (2008) https://doi.org/10.1038/nphys781
  25. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, "Boron nitride substrates for high-quality graphene electronics" Nature Nanotech. 5, 722 (2010) https://doi.org/10.1038/nnano.2010.172
  26. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. Leroy, "Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride" Nature Mater. 10, 282 (2011) https://doi.org/10.1038/nmat2968
  27. P. Yasaei, B. Kumar, R. Hantehzadeh, M. Kayyalha, A. Baskin, N. Repnin, C. Wang, R. F. Klie, Y. P. Chen, P. Kral, and A. Salehi-Khojin, "Chemical sensing with switchable transport channels in graphene grain boundaries" Nature Commun. 5:4911 (2014) https://doi.org/10.1038/ncomms5911
  28. S. Y. Jeong, S. Jeong, S. W. Lee, S. T. Kim, D. Kim, H. J. Jeong, J. T. Han, K.-J. Baeg, S. Yang, M. S. Jeong, and G.-W. Lee, "Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution" Sci. Rep. 5:11216 (2015) https://doi.org/10.1038/srep11216
  29. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B Kaner, and B. H. Weiller, "Practical chemical sensors from chemically derived graphene" ACS Nano 3, 301-306 (2009) https://doi.org/10.1021/nn800593m
  30. S.-Y. Cho, S. J. Kim, Y. Lee, J.-S. Kim, W.-B. Jung, H.-W. Yoo, J. Kim, and H.-T. Jung, "Highly enhanced gas adsorption properties in vertically aligned $MoS_2$ layers" ACS Nano 9, 9314-9321 (2015). https://doi.org/10.1021/acsnano.5b04504
  31. D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, "Sensing behavior of atomically thin-layered $MoS_2$ transistors" ACS Nano 7, 4879-4891 (2013) https://doi.org/10.1021/nn400026u
  32. B. Cho, M. G. Hahm, M. Choi, J. Yoon, A. R. Kim, Y.-J. Lee, S. -G. Park, J.-D. Kwon, C. S. Kim, M. Song, Y. Jeong, K.-S. Nam, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, H. C. Ko, P. M. Ajayan, and D. -H. Kim, "Charge-transfer-based gas sensing using atomic-layer $MoS_2$" Sci. Rep. 5:8052 (2015) https://doi.org/10.1038/srep08052
  33. B. Cho, A. R. Kim, D. J. Kim, H.-S. Chung, S. Y. Choi, J.-D. Kwon, S. W. Park, Y. Kim, B. H. Lee, K. H. Lee, D.-H. Kim, J. Kim, and M. G. Hahm, "Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor" ACS Appl. Mater. Interfaces 8, 19635-19642 (2016) https://doi.org/10.1021/acsami.6b05943
  34. N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, and J. Li, "Photoresponsive and gas sensing field-effect transistors based on multilayer $WS_2$ naoflakes" Sci. Rep. 4:5209 (2014)
  35. Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, and H. Zhang, "Fabrication of flexible $MoS_2$ thin-film transistor arrays for practical gas-sensing applications" Small 8, 2994-2999 (2012) https://doi.org/10.1002/smll.201201224
  36. S. Mao, G. Lu, and J. Chen, "Nanocarbon-based gas sensors: progress and challenges" J. Mater. Chem. A 2, 5573-5579 (2014) https://doi.org/10.1039/c3ta13823b
  37. K. Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin, C. W. Lee, K. Lee, J. Koo, H. Lee, J. Kim, T. Lee, J. Park, and H. Kim, "Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization" ACS Nano 10, 9287-9296 (2016) https://doi.org/10.1021/acsnano.6b03631
  38. M. G. Chung, D. H. Kim, H. M. Lee, T. Kim, J. H. Choi, D. K. Seo, J.-B. Yoo, S.-H. Hong, T. J. Kang, Y. H. Kim, "Highly sensitive $NO_2$ gas sensor based on ozeone treated graphene" Sens. Actuators B: Chem. 166-167, 172-176 (2012) https://doi.org/10.1016/j.snb.2012.02.036
  39. O. S. Kwon, S. J. Park, J. -Y. Hong, A.-R. Han, J. S. Lee, J. S. Lee, J. H. Oh, and J. Jang, "Flexible FET-type VEGF aptasensor based on Nitrogen-doped graphene converted from conducting polymer" ACS Nano 2, 1486-1493 (2012)
  40. W. Yuan, A. Liu, L. Huang, C. Li, and G. Shi, "High-performance $NO_2$ sensors based on chemically modified graphene" Adv. Mater. 25, 766-771 (2013) https://doi.org/10.1002/adma.201203172
  41. Y. H. Kim, S. J. Kim, Y.-J. Kim, Y.-S. Shim, S. Y. Kim, B. H. Hong, and H. W. Jang, "Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending" ACS Nano 9, 10453-10460 (2015) https://doi.org/10.1021/acsnano.5b04680
  42. G. S. Kulkarni, K. Reddy, W. Zang, K. Lee, X. Fan, and Z. Zhong, "Electrical probing and tuning of molecular physisorption on graphene" Nano Lett. 16, 695-700 (2016) https://doi.org/10.1021/acs.nanolett.5b04500
  43. S.-J. Choi, S.-J. Kim, J. -S. Jang, J.-H. Lee, and I.-D. Kim, "Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: Improved reversible reaction kinetics of optically reduced graphene oxide" Small 12, 5826-5835 (2016) https://doi.org/10.1002/smll.201602230
  44. S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potrailo, and A. A. Balandin, "Selective gas sensing with a single pristine graphene transistor" Nano Lett. 12, 2294-2298 (2012). https://doi.org/10.1021/nl3001293
  45. S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, "Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphene" Sci. Rep. 3:1868 (2013) https://doi.org/10.1038/srep01868
  46. A. K. Geim, and I. V. Grigorieva, "Van der Waals heterostructures" Nature 499, 419-425 (2013) https://doi.org/10.1038/nature12385
  47. G. Liu, S. L. Rumyantsev, C. Jiang, M. S. Shur, and A. A. Balandin, "Selective gas sensing with h-BN capped $MoS_2$ heterostructure tin-film transistors" IEEE Elect. Dev. Lett. 36, 1202-1204 (2015) https://doi.org/10.1109/LED.2015.2481388
  48. H. K. Choi, J. Park, N. Myoung, H.-J. Kim, J. S. Choi, Y. K. Choi, C.-Y. Hwang, J. T. Kim, S. Park, Y. Yi, S. K. Chang, H. C. Park, C. Hwang, C.-G. Choi, and Y.-J. Yu, "Gas molecule sensing of van der Waals tunnel field effect transistors", Submitted (2017)