References
- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009). https://doi.org/10.1126/science.1171245
- X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors," Science, 319 [5867] 1229-31 (2008). https://doi.org/10.1126/science.1150878
- L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow Graphene Nanoribbons from Carbon Nanotubes," Nature, 458 [7240] 877-80 (2009). https://doi.org/10.1038/nature07919
- J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, "Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography," Adv. Mater., 25 [14] 4723-28 (2013). https://doi.org/10.1002/adma.201300813
-
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-Layer
$MoS_2$ Transistors," Nat. Nanotechnol., 6 [3] 147-50 (2011). https://doi.org/10.1038/nnano.2010.279 - Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, " Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides," Nat. Nanotechnol., 7 [11] 699-712 (2012). https://doi.org/10.1038/nnano.2012.193
- D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides," ACS Nano, 8 [2] 1102-20 (2014). https://doi.org/10.1021/nn500064s
-
L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, "Chloride Molecular Doping Technique on 2D Materials:
$WS_2$ and$MoS_2$ ," Nano Lett., 14 [11] 6275-80 (2014). https://doi.org/10.1021/nl502603d -
W. Park, J. Baik, T.-Y. Kim, K. Cho, W.-K. Hong, H.-J. Shin, and T. Lee, "Photoelectron Spectroscopic Imaging and Device Applications of Large-Area Patternable Single-Layer
$MoS_2$ Synthesized by Chemical Vapor Deposition," ACS Nano, 8 [5] 4961-68 (2014). https://doi.org/10.1021/nn501019g - L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, and Lianhui Wang, "Rapid Preparation of Single-Layer Transition Metal Dichalcogenide Nanosheets via Ultrasonication Enhanced Lithium Intercalation," Chem. Commun., 52 [3] 529-32 (2016). https://doi.org/10.1039/C5CC07301D
-
D. Kiriya, M. Tosun, P. Zhao, J. S. Kang, and A. Javey, "Air-Stable Surface Charge Transfer Doping of
$MoS_2$ by Benzyl Viologen," J. Am. Chem. Soc., 136 [22] 7853-56 (2014). https://doi.org/10.1021/ja5033327 -
W. Park, Y. Kim, U. Jung, J. H. Yang, C. Cho, Y. J. Kim, S. M. N. Hasan, H. G. Kim, H. B. R. Lee, and B. H. Lee, "Complementary Unipolar
$WS_2$ Field-Effect Transistors Using Fermi-Level Depinning Layers," Adv. Electron. Mater., 2 [2] 1500278 (2016). https://doi.org/10.1002/aelm.201500278 -
A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M. J. Kim, J. Kim, K. Cho, R. Addou, C. L. Hinkle, J. Appenzeller, and R. M. Wallace, "Covalent Nitrogen Doping and Compressive Strain in
$MoS_2$ by Remote$N_2$ Plasma Exposure," Nano Lett., 16 [9] 5437-43 (2016). https://doi.org/10.1021/acs.nanolett.6b01853 -
H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-Performance Single Layered
$WSe_2$ p-FETs with Chemically Doped Contacts," Nano Lett., 12 [7] 3788-92 (2012). https://doi.org/10.1021/nl301702r -
S. KC, R. C. Longo, R. Addou, R. M Wallace, and K. Cho, "Impact of Intrinsic Atomic Defects on The Electronic Structure of
$MoS_2$ Monolayers," Nanotechnology, 25 [37] 375703 (2014). https://doi.org/10.1088/0957-4484/25/37/375703 - H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, "Hopping Transport Through Defect-Induced Localized States in Molybdenum Disulphide," Nat. Commun., 4, 2642 (2013). https://doi.org/10.1038/ncomms3642
-
V. Iberi, L. Liang, A. V. Ievlev, M. G. Stanford, M.-W. Lin, X. Li, M. Mahjouri-Samani, S. Jesse, B. G. Sumpter, S. V. Kalinin, D. C. Joy, K. Xiao, A. Belianinov, and O. S. Ovchinnikova, "Nanoforging Single Layer
$MoSe_2$ Through Defect Engineering with Focused Helium Ion Beams," Sci. Rep., 6, 30481 (2016). https://doi.org/10.1038/srep30481 -
Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, "Manipulating the Thermal Conductivity of Monolayer
$MoS_2$ via Lattice Defect and Strain Engineering," J. Phys. Chem. C, 119 [28] 16358-65 (2015). https://doi.org/10.1021/acs.jpcc.5b03607 - P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T.-M. Lu, B. Yu, H. Terrones, and N. Koratkar, "Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides," ACS Nano, 9 [2] 1520-27 (2015). https://doi.org/10.1021/nn5073495
-
I. S. Kim, V. K. Sangwan, D. Jariwala, J. D. Wood, S. Park, K.-S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, "Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived
$MoS_2$ ," ACS Nano, 8 [10] 10551-58 (2014). https://doi.org/10.1021/nn503988x -
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, "Controllable Disorder Engineering in Oxygen-Incorporated
$MoS_2$ Ultrathin Nanosheets for Efficient Hydrogen Evolution," J. Am. Chem. Soc., 135 [47] 17881-88 (2013). https://doi.org/10.1021/ja408329q -
Z. Wu, B. Li, Y. Xue, J. Li, Y. Zhang, and Feng Gao, "Fabrication of Defect-Rich
$MoS_2$ Ultrathin Nanosheets for Application in Lithium-Ion Batteries and Supercapacitors," J. Mater. Chem. A, 3 [38] 19445-54 (2015). https://doi.org/10.1039/C5TA04549E -
W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, D. Shi, X. Lin, J. Guo, X. Bai, and G. Zhang, "Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer
$MoS_2$ ," J. Am. Chem. Soc., 137 [50] 15632-35 (2015). https://doi.org/10.1021/jacs.5b10519 -
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. Wen (David) Lou, and Y. Xie, "Defect-Rich
$MoS_2$ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution," Adv. Mater., 25 [40] 5807-13 (2013). https://doi.org/10.1002/adma.201302685 -
S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, "Broadband Few-Layer
$MoS_2$ Saturable Absorbers," Adv. Mater., 26 [21] 3538-44 (2014). https://doi.org/10.1002/adma.201306322 -
Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao, B. Huang, L. Mei, and J. Wang, "Ultrabroadband
$MoS_2$ Photodetector with Spectral Response from 445 to 2717 nm," Adv. Mater., 29 [17] 1605972 (2017). https://doi.org/10.1002/adma.201605972 -
H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, "Activating and Optimizing
$MoS_2$ Basal Planes for Hydrogen Evolution Through The Formation of Strained Sulphur Vacancies," Nat. Mater., 15 [1] 48-53 (2016). https://doi.org/10.1038/nmat4465 -
H. Nan, Z. Wang, W.Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, "Strong Photoluminescence Enhancement of
$MoS_2$ through Defect Engineering and Oxygen Bonding," ACS Nano, 8 [6] 5738-45 (2014). https://doi.org/10.1021/nn500532f -
S. I. Khondaker and M. R. Islam, "Bandgap Engineering of
$MoS_2$ Flakes via Oxygen Plasma: A Layer Dependent Study," J. Phys. Chem. C, 120 [25] 13801-06 (2016). https://doi.org/10.1021/acs.jpcc.6b03247 -
M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J. W. Ager, R. Maboudian, and A. Javey, "Air-Stable n-Doping of
$WSe_2$ by Anion Vacancy Formation with Mild Plasma Treatment," ACS Nano, 10 [7] 6853-60 (2016). https://doi.org/10.1021/acsnano.6b02521 -
G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, "Defects Engineered Monolayer
$MoS_2$ for Improved Hydrogen Evolution Reaction," Nano Lett., 16 [2] 1097-103 (2016). https://doi.org/10.1021/acs.nanolett.5b04331 -
W. S. Leong, Y. Li, X. Luo, C. T. Nai, S. Y. Quek, and J. T. L. Thong, "Tuning The Threshold Voltage of
$MoS_2$ Field-Effect Transistors via Surface Treatment," Nanoscale, 7 [24] 10823-31 (2015). https://doi.org/10.1039/C5NR00253B -
M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, "Biexciton Emission from Edges and Grain Boundaries of Triangular
$WS_2$ Monolayers," ACS Nano, 10 [2] 2399-405 (2016). https://doi.org/10.1021/acsnano.5b07214 -
K. Cho, M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S. J. Yun, Y. H. Lee, W.-K. Hong, and T. Lee, "Electrical and Optical Characterization of
$MoS_2$ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules," ACS Nano, 9 [8] 8044-53 (2015). https://doi.org/10.1021/acsnano.5b04400 -
D. M. Sim, M. Kim, S. Yim, M.-J. Choi, J. Choi, S. Yoo, and Y. S. Jung, "Controlled Doping of Vacancy-Containing Few-Layer
$MoS_2$ via Highly Stable Thiol-Based Molecular Chemisorption," ACS Nano, 9 [12] 12115-23 (2015). https://doi.org/10.1021/acsnano.5b05173 - Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y. W. Zhang, Y. Shi, and X. Wang, "Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering," Nat. Commun., 5, 5290 (2014). https://doi.org/10.1038/ncomms6290
- S.-S. Chee, C. Oh, M. Son, G.-C. Son, H. Jang, T. J. Yoo, S. Lee, W. Lee, J. Y. Hwang, H. Choi, B. H, Lee, and M.-H. Ham, "Sulfur Vacancy-Induced Reversible Doping of Transition Metal Disulfides via Hydrazine Treatment," Nanoscale, 9 [27] 9333-39 (2017). https://doi.org/10.1039/C7NR01883E
-
S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, and P. Samori, "Engineering Chemically Active Defects in Monolayer
$MoS_2$ Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols," Adv. Mater., 29 [18] 1606760 (2017). https://doi.org/10.1002/adma.201606760 -
H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh, "Highly Stable and Tunable Chemical Doping of Multilayer
$WS_2$ Field Effect Transistor: Reduction in Contact Resistance," ACS Appl. Mater. Interfaces, 7 [42] 23589-96 (2015). https://doi.org/10.1021/acsami.5b06825 - D.-H. Kang, M.-S. Kim, J. Shim, J. Jeon, H.-Y. Park, W.-S. Jung, H.-Y. Yu, C.-H. Pang, S. Lee, and J.-H. Park, "High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self-Assembled Monolayer Doping," Adv. Funct. Mater., 25 [27] 4219-27 (2015). https://doi.org/10.1002/adfm.201501170
- J. D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X.-A. Zhang, L. Wang, H. Zhang, A. T. S. Wee, and W. Chen, "Electron-Doping-Enhanced Trion Formation in Monolayer Molybdenum Disulfide Functionalized with Cesium Carbonate," ACS Nano, 8 [5] 5323-29 (2014). https://doi.org/10.1021/nn501580c