2차원 전이금속칼코겐 화합물 소재의 결함 제어 연구 동향

  • 지상수 (광주과학기술원 신소재공학부) ;
  • 함문호 (광주과학기술원 신소재공학부)
  • Published : 2017.09.30

Abstract

Keywords

References

  1. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009). https://doi.org/10.1126/science.1171245
  2. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors," Science, 319 [5867] 1229-31 (2008). https://doi.org/10.1126/science.1150878
  3. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow Graphene Nanoribbons from Carbon Nanotubes," Nature, 458 [7240] 877-80 (2009). https://doi.org/10.1038/nature07919
  4. J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, "Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography," Adv. Mater., 25 [14] 4723-28 (2013). https://doi.org/10.1002/adma.201300813
  5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-Layer $MoS_2$ Transistors," Nat. Nanotechnol., 6 [3] 147-50 (2011). https://doi.org/10.1038/nnano.2010.279
  6. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, " Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides," Nat. Nanotechnol., 7 [11] 699-712 (2012). https://doi.org/10.1038/nnano.2012.193
  7. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides," ACS Nano, 8 [2] 1102-20 (2014). https://doi.org/10.1021/nn500064s
  8. L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, "Chloride Molecular Doping Technique on 2D Materials: $WS_2$ and $MoS_2$," Nano Lett., 14 [11] 6275-80 (2014). https://doi.org/10.1021/nl502603d
  9. W. Park, J. Baik, T.-Y. Kim, K. Cho, W.-K. Hong, H.-J. Shin, and T. Lee, "Photoelectron Spectroscopic Imaging and Device Applications of Large-Area Patternable Single-Layer $MoS_2$ Synthesized by Chemical Vapor Deposition," ACS Nano, 8 [5] 4961-68 (2014). https://doi.org/10.1021/nn501019g
  10. L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, and Lianhui Wang, "Rapid Preparation of Single-Layer Transition Metal Dichalcogenide Nanosheets via Ultrasonication Enhanced Lithium Intercalation," Chem. Commun., 52 [3] 529-32 (2016). https://doi.org/10.1039/C5CC07301D
  11. D. Kiriya, M. Tosun, P. Zhao, J. S. Kang, and A. Javey, "Air-Stable Surface Charge Transfer Doping of $MoS_2$ by Benzyl Viologen," J. Am. Chem. Soc., 136 [22] 7853-56 (2014). https://doi.org/10.1021/ja5033327
  12. W. Park, Y. Kim, U. Jung, J. H. Yang, C. Cho, Y. J. Kim, S. M. N. Hasan, H. G. Kim, H. B. R. Lee, and B. H. Lee, "Complementary Unipolar $WS_2$ Field-Effect Transistors Using Fermi-Level Depinning Layers," Adv. Electron. Mater., 2 [2] 1500278 (2016). https://doi.org/10.1002/aelm.201500278
  13. A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M. J. Kim, J. Kim, K. Cho, R. Addou, C. L. Hinkle, J. Appenzeller, and R. M. Wallace, "Covalent Nitrogen Doping and Compressive Strain in $MoS_2$ by Remote $N_2$ Plasma Exposure," Nano Lett., 16 [9] 5437-43 (2016). https://doi.org/10.1021/acs.nanolett.6b01853
  14. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-Performance Single Layered $WSe_2$ p-FETs with Chemically Doped Contacts," Nano Lett., 12 [7] 3788-92 (2012). https://doi.org/10.1021/nl301702r
  15. S. KC, R. C. Longo, R. Addou, R. M Wallace, and K. Cho, "Impact of Intrinsic Atomic Defects on The Electronic Structure of $MoS_2$ Monolayers," Nanotechnology, 25 [37] 375703 (2014). https://doi.org/10.1088/0957-4484/25/37/375703
  16. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, "Hopping Transport Through Defect-Induced Localized States in Molybdenum Disulphide," Nat. Commun., 4, 2642 (2013). https://doi.org/10.1038/ncomms3642
  17. V. Iberi, L. Liang, A. V. Ievlev, M. G. Stanford, M.-W. Lin, X. Li, M. Mahjouri-Samani, S. Jesse, B. G. Sumpter, S. V. Kalinin, D. C. Joy, K. Xiao, A. Belianinov, and O. S. Ovchinnikova, "Nanoforging Single Layer $MoSe_2$ Through Defect Engineering with Focused Helium Ion Beams," Sci. Rep., 6, 30481 (2016). https://doi.org/10.1038/srep30481
  18. Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, "Manipulating the Thermal Conductivity of Monolayer $MoS_2$ via Lattice Defect and Strain Engineering," J. Phys. Chem. C, 119 [28] 16358-65 (2015). https://doi.org/10.1021/acs.jpcc.5b03607
  19. P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T.-M. Lu, B. Yu, H. Terrones, and N. Koratkar, "Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides," ACS Nano, 9 [2] 1520-27 (2015). https://doi.org/10.1021/nn5073495
  20. I. S. Kim, V. K. Sangwan, D. Jariwala, J. D. Wood, S. Park, K.-S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, "Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived $MoS_2$," ACS Nano, 8 [10] 10551-58 (2014). https://doi.org/10.1021/nn503988x
  21. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, "Controllable Disorder Engineering in Oxygen-Incorporated $MoS_2$ Ultrathin Nanosheets for Efficient Hydrogen Evolution," J. Am. Chem. Soc., 135 [47] 17881-88 (2013). https://doi.org/10.1021/ja408329q
  22. Z. Wu, B. Li, Y. Xue, J. Li, Y. Zhang, and Feng Gao, "Fabrication of Defect-Rich $MoS_2$ Ultrathin Nanosheets for Application in Lithium-Ion Batteries and Supercapacitors," J. Mater. Chem. A, 3 [38] 19445-54 (2015). https://doi.org/10.1039/C5TA04549E
  23. W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, D. Shi, X. Lin, J. Guo, X. Bai, and G. Zhang, "Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer $MoS_2$," J. Am. Chem. Soc., 137 [50] 15632-35 (2015). https://doi.org/10.1021/jacs.5b10519
  24. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. Wen (David) Lou, and Y. Xie, "Defect-Rich $MoS_2$ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution," Adv. Mater., 25 [40] 5807-13 (2013). https://doi.org/10.1002/adma.201302685
  25. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, "Broadband Few-Layer $MoS_2$ Saturable Absorbers," Adv. Mater., 26 [21] 3538-44 (2014). https://doi.org/10.1002/adma.201306322
  26. Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao, B. Huang, L. Mei, and J. Wang, "Ultrabroadband $MoS_2$ Photodetector with Spectral Response from 445 to 2717 nm," Adv. Mater., 29 [17] 1605972 (2017). https://doi.org/10.1002/adma.201605972
  27. H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, "Activating and Optimizing $MoS_2$ Basal Planes for Hydrogen Evolution Through The Formation of Strained Sulphur Vacancies," Nat. Mater., 15 [1] 48-53 (2016). https://doi.org/10.1038/nmat4465
  28. H. Nan, Z. Wang, W.Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, "Strong Photoluminescence Enhancement of $MoS_2$ through Defect Engineering and Oxygen Bonding," ACS Nano, 8 [6] 5738-45 (2014). https://doi.org/10.1021/nn500532f
  29. S. I. Khondaker and M. R. Islam, "Bandgap Engineering of $MoS_2$ Flakes via Oxygen Plasma: A Layer Dependent Study," J. Phys. Chem. C, 120 [25] 13801-06 (2016). https://doi.org/10.1021/acs.jpcc.6b03247
  30. M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J. W. Ager, R. Maboudian, and A. Javey, "Air-Stable n-Doping of $WSe_2$ by Anion Vacancy Formation with Mild Plasma Treatment," ACS Nano, 10 [7] 6853-60 (2016). https://doi.org/10.1021/acsnano.6b02521
  31. G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, "Defects Engineered Monolayer $MoS_2$ for Improved Hydrogen Evolution Reaction," Nano Lett., 16 [2] 1097-103 (2016). https://doi.org/10.1021/acs.nanolett.5b04331
  32. W. S. Leong, Y. Li, X. Luo, C. T. Nai, S. Y. Quek, and J. T. L. Thong, "Tuning The Threshold Voltage of $MoS_2$ Field-Effect Transistors via Surface Treatment," Nanoscale, 7 [24] 10823-31 (2015). https://doi.org/10.1039/C5NR00253B
  33. M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, "Biexciton Emission from Edges and Grain Boundaries of Triangular $WS_2$ Monolayers," ACS Nano, 10 [2] 2399-405 (2016). https://doi.org/10.1021/acsnano.5b07214
  34. K. Cho, M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S. J. Yun, Y. H. Lee, W.-K. Hong, and T. Lee, "Electrical and Optical Characterization of $MoS_2$ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules," ACS Nano, 9 [8] 8044-53 (2015). https://doi.org/10.1021/acsnano.5b04400
  35. D. M. Sim, M. Kim, S. Yim, M.-J. Choi, J. Choi, S. Yoo, and Y. S. Jung, "Controlled Doping of Vacancy-Containing Few-Layer $MoS_2$ via Highly Stable Thiol-Based Molecular Chemisorption," ACS Nano, 9 [12] 12115-23 (2015). https://doi.org/10.1021/acsnano.5b05173
  36. Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y. W. Zhang, Y. Shi, and X. Wang, "Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering," Nat. Commun., 5, 5290 (2014). https://doi.org/10.1038/ncomms6290
  37. S.-S. Chee, C. Oh, M. Son, G.-C. Son, H. Jang, T. J. Yoo, S. Lee, W. Lee, J. Y. Hwang, H. Choi, B. H, Lee, and M.-H. Ham, "Sulfur Vacancy-Induced Reversible Doping of Transition Metal Disulfides via Hydrazine Treatment," Nanoscale, 9 [27] 9333-39 (2017). https://doi.org/10.1039/C7NR01883E
  38. S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, and P. Samori, "Engineering Chemically Active Defects in Monolayer $MoS_2$ Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols," Adv. Mater., 29 [18] 1606760 (2017). https://doi.org/10.1002/adma.201606760
  39. H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh, "Highly Stable and Tunable Chemical Doping of Multilayer $WS_2$ Field Effect Transistor: Reduction in Contact Resistance," ACS Appl. Mater. Interfaces, 7 [42] 23589-96 (2015). https://doi.org/10.1021/acsami.5b06825
  40. D.-H. Kang, M.-S. Kim, J. Shim, J. Jeon, H.-Y. Park, W.-S. Jung, H.-Y. Yu, C.-H. Pang, S. Lee, and J.-H. Park, "High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self-Assembled Monolayer Doping," Adv. Funct. Mater., 25 [27] 4219-27 (2015). https://doi.org/10.1002/adfm.201501170
  41. J. D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X.-A. Zhang, L. Wang, H. Zhang, A. T. S. Wee, and W. Chen, "Electron-Doping-Enhanced Trion Formation in Monolayer Molybdenum Disulfide Functionalized with Cesium Carbonate," ACS Nano, 8 [5] 5323-29 (2014). https://doi.org/10.1021/nn501580c