DOI QR코드

DOI QR Code

생체 조직의 국소 강도 측정을 위한 마이크로 콘 팁을 가진 압전 캔틸레버 제작

Fabrication of Piezoelectric Cantilever with Microcone Tip for Sensing Local Stiffness of Biological Tissue

  • 노희창 (연세대학교 기계공학부) ;
  • 양다솜 (연세대학교 기계공학부) ;
  • 류원형 (연세대학교 기계공학부)
  • 투고 : 2017.05.09
  • 심사 : 2017.08.22
  • 발행 : 2017.11.01

초록

체외 및 체내 삽입형 이미징 기술 등에 의해서는 판별이 어려운 질환의 조기 진단을 위해 인체 내 삽입이 가능하며 체내 국소부위의 정밀 측정이 가능한 새로운 진단기술이 필요하다. 동맥경화로 발전할 수 있는 죽상경화반의 경우 이미징 기술로는 판별이 어려우나 건강한 조직 대비 미세한 기계적 물성치의 차이를 가질 것으로 예상되어 정밀한 국소 조직의 기계적 강도 측정을 통한 조기 진단이 가능할 것으로 기대된다. 본 연구에서는 궁극적으로 체내 삽입이 가능하며 국소 조직의 강도 측정이 가능한 압전 재료 기반 캔틸레버 센서를 제작하고자 하였다. 압전 기능을 갖는 캔틸레버 제작을 위해 $BaTiO_3$ 나노입자 기반의 압전 고분자 복합재 최적화 연구 및 열 인장 공정으로 캔틸레버 끝 단에 마이크로 콘 구조의 팁을 제작하였다. 이 압전 캔틸레버 센서를 이용하여 기계적 물성치가 다른 생체 조직의 강도 측정을 통해 센서로서의 기능을 확인하였다.

For diseases that are difficult to detect by conventional imaging techniques, the development of a diagnostic method that allows sensors to be inserted into the human body to aid the diagnosis of local spots of the target tissue, is highly desirable. In particular, it is extremely difficult to determine whether vulnerable plaque can later develop into atherosclerosis using only imaging techniques. However, vulnerable plaques are expected to have slightly different mechanical properties than healthy tissue. In this study, we aim to develop a piezoelectric cantilever-type sensor that can be inserted into the human body and can detect the local mechanical properties of the target tissue. A piezoelectric polymer composite based on $BaTiO_3$ nanoparticles was optimized for fabrication of a piezoelectric cantilever. Next, a micro-cone tip was fabricated at the end of the piezoelectric cantilever by thermal drawing. Finally, stiffness of biological tissue samples was measured with the piezoelectric cantilever sensor for verifying its functionality.

키워드

참고문헌

  1. Falk, Erling, Prediman K. Shah, Valentin Fuster., 1995, "Coronary Plaque Disruption," Circulation Vol. 92, No. 3, pp. 657-671. https://doi.org/10.1161/01.CIR.92.3.657
  2. Suh, William M., Arnold H. Seto, Ronan J.P. Margey, Cruz-Gonzalez, I., Jang, I.-K., 2011, "Intravascular Detection of the Vulnerable Plaque," Circulation: Cardiovascular Imaging, Vol. 4, No. 2, pp. 169-178. https://doi.org/10.1161/CIRCGENETICS.110.959296
  3. Park, K. I., Son, J. H., Hwang, G. T., Jeong, C. K., Ryu, J., Koo, M., Choi, I., Lee, S. H., Byun, M., Wang, Z. L. and Lee. K. J., 2014, "Highly-efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates," Adv Mater, Vol. 26, No. 16, pp. 2514-20. https://doi.org/10.1002/adma.201305659
  4. Park, K. I., Lee, M., Liu, Y., Moon, S., Hwang, G. T., Zhu, G., Kim, J. E., Kim, S. O., Kim, D. K., Wang, Z. L. and Lee. K. J., 2012, "Flexible Nanocomposite Generator Made of BaTiO(3) Nanoparticles and Graphitic Carbons," Adv Mater, Vol. 24, No. 22, pp. 2999-3004, 2937. https://doi.org/10.1002/adma.201200105
  5. Chun, J., Kang, N.-R., Kim, J.-Y., Noh, M.-S., Kang, C.-Y., Choi, D., Kim, S.-W., Wang, Z. L. and Baik, J. M., 2015, "Highly Anisotropic Power Generation in Piezoelectric Hemispheres Composed Stretchable Composite Film for Self-powered Motion Sensor," Nano Energy, Vol. 11, pp. 1-10. https://doi.org/10.1016/j.nanoen.2014.10.010
  6. Yang, Kai, Li, Z. and Chen, D., 2012, "Design and Fabrication of a Novel T-Shaped Piezoelectric ZnO Cantilever Sensor," Active and Passive Electronic Components, Vol. 2012, pp. 1-7.
  7. Prashanthi, K., Miriyala, N., Gaikwad, R. D., Moussa, W., Ramgopal Rao, V. and Thundat, T., 2013, "Vibtrational Energy Harvesting using Photopatternable Piezoelectric Nanocomposite Cantilevers," Nano Energy, Vol. 2, No. 5, pp. 923-932. https://doi.org/10.1016/j.nanoen.2013.03.013
  8. Kandpal, Manoj, Chandrashekhar Sharan, Pankaj Poddar, K. Prashanthi, Prakash R. Apte, V. Ramgopal Rao. 2012. "Photopatternable Nano-composite(SU-8/ZnO) Thin Films for Piezo-electric Applications," Applied Physics Letters, Vol. 101, No. 10, pp. 104102. https://doi.org/10.1063/1.4748575
  9. Wang, Zhao, Xumin Pan, Yahua He, Yongming Hu, Haoshuang Gu, Yu Wang. 2015. "Piezoelectric Nanowires in Energy Harvesting Applications," Advances in Materials Science and Engineering, Vol. 2015, pp. 1-21.
  10. Prashanthi, K., M. Naresh, V. Seena, T. Thundat, V. Ramgopal Rao. 2012. "A Novel Photoplastic Piezoelectric Nanocomposite for MEMS Applications," Journal of Microelectromechanical Systems, Vol. 21, No. 2, pp. 259-261. https://doi.org/10.1109/JMEMS.2011.2178118
  11. Gullapalli, H., V. S. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P. M. Ajayan. 2010. "Flexible Piezoelectric ZnO-paper Nanocomposite Strain Sensor," Small, Vol. 6, No. 15, pp. 1641-6. https://doi.org/10.1002/smll.201000254
  12. Lee, JiYong, Seung Hyun Park, Il Ho Seo, Kang Ju Lee, WonHyoung Ryu. 2015. "Rapid and Repeatable Fabrication of High A/R Silk Fibroin Microneedles using Thermally-drawn Micromolds," European Journal of Pharmaceutics and Biopharmaceutics, Vol. 94, pp. 11-19. https://doi.org/10.1016/j.ejpb.2015.04.024
  13. Yang, D., H. Hong, Y. H. Seo, L. H. Kim, W. Ryu. 2015. "Three-Dimensional Rapid Prototyping of Multidirectional Polymer Nanoprobes for Single Cell Insertion," ACS Appl Mater Interfaces, Vol. 7, No. 30, pp. 16873-80. https://doi.org/10.1021/acsami.5b05254
  14. Won, S. S., Sheldon, M., Mostovych, N., Kwak, J., Chang, B.-S., Ahn, C. W., Kingon, A. I., Kim, I. W. and Kim, S.-H., 2015, "Piezoelectric Poly(Vinylidene Fluoride Trifluoroethylene) Thin Film-based Power Generators using Paper Substrates for Wearable Device Applications," Applied Physics Letters, Vol. 107, No. 20, p. 202901. https://doi.org/10.1063/1.4935557
  15. Chung, S. Y., Lee, H.-J., Lee, T. I. and Kim, Y. S., 2017. "A Wearable Piezoelectric Bending Motion Sensor for Simultaneous Detection of Bending Curvature and Speed," RSC Adv., Vol. 7, No. 5, pp. 2520-2526. https://doi.org/10.1039/C6RA25797F