DOI QR코드

DOI QR Code

밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량

Growth and Phytochemical Contents of Spinach as Affected by Different Type of Fluorescent Lamp in a Closed-type Plant Production System

  • 김현민 (경상대학교 대학원 응용생명과학부) ;
  • 김혜민 (경상대학교 대학원 응용생명과학부) ;
  • 이혜리 (경상대학교 농업생명과학대학 농업식물과학과) ;
  • 이재은 (KC 케미칼 기술연구소) ;
  • 황승재 (경상대학교 대학원 응용생명과학부)
  • Kim, Hyeon Min (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Kim, Hye Min (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Lee, Hye Ri (Department of Agricultural Plant Science, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Lee, Jae Eun (R&D Center, KC Chemical) ;
  • Hwang, Seung Jae (Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • 투고 : 2017.08.11
  • 심사 : 2017.10.14
  • 발행 : 2017.10.31

초록

본 연구는 밀폐형 식물생산 시스템에서 다양한 형광등 종류에 따른 시금치 '수시로'의 생육과 기능성물질 함량에 미치는 영향을 구명하기 위해 수행되었다. 종자는 128구 플러그 트레이에 암면을 이용하여 파종되었다. 시금치 묘는 재순환 담액식 수경재배 시스템을 이용하여 EC $1.5dS{\cdot}m^{-1}$, pH 6.5의 밀폐형 식물생산 시스템에 정식되었다. 묘는 3가지 종류의 형광등 #S(NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O( FHF32SSEX-D, Osram Co. Ltd., Germany), #P(FLR32SS EX-D, Philips Co. Ltd., The Netherlands)에 광도 $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD와 광주기 14/10 (명기/암기)으로 설정했다. 정식 후 재배환경은 온도 $25{\pm}1^{\circ}C$와 상대습도 $60{\pm}10%$ 였다. 정식 후 6주간 각 처리마다 30개체를 재배하였고, 생육 및 기능성 물질 함량을 3주째와 6주째 측정했다. 정식 후 3주째, #O 형광등에서 다른 처리구에 비해 초장과 엽폭이 유의적으로 컸다. 그러나 지하부의 생체중과 건물중은 #P 형광등에서 가장 높았다. 또한 총페놀 함량은 #P 형광등에서 유의적으로 가장 높았다. 정식 후 6주째, #O 형광등에서 초장, 지상부의 생체중 및 건물중에서 시금치의 생육이 향상되는 효과를 보였다. 총페놀 함량도 #O 형광 등에서 다른 처리구에 비해 유의적으로 증가하였다. 그러나 항산화 활성은 모든 처리구에서 유의적인 차이를 나타내지 않았다. 따라서 이러한 결과는 밀폐형 식물생산 시스템에서 #O 형광등 처리가 시금치의 생육과 기능성물질 함량 축적에 효과적인 것으로 나타났다.

This study was conducted to examine the growth and phytochemical contents of spinach (Spinacia Oleracea L. 'Sushiro') as affected by different fluorescent lamps in a closed-type plant production system. Seeds were sown in a 128-cell plug tray filled in rockwool. The seedlings were transplanted into a DFT (deep floating technique) system with recycling nutrient solution (EC $1.5dS{\cdot}m^{-1}$ and pH 6.5) in a closed-type plant production system. The seedlings were grown under 3 types of fluorescent lamp, #S (NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O (FHF32SSEX-D, Osram Co. Ltd., Germany), and #P (FLR32SS EX-D, Philips Co. Ltd., The Netherlands) at $150{\mu}mol{\cdot}m-2{\cdot}s^{-1}\;PPFD$ with a photoperiod of 14/10 (light/dark) hours. Plants were cultured under condition of $25{\pm}1^{\circ}C$ temperature and $60{\pm}10%$ relative humidity after transplanting. Thirty plants per each treatment were cultivated for $6^{th}$ week after transplanting. And growth and phytochemical contents were measured at $3^{rd}$ and $6^{th}$ week. At the $3^{rd}$ week after transplanting, the parameter values of plant height and leaf width were higher in the #O than the others. However, fresh and dry weights of root were the greatest in the #P. In addition, total phenolic concentration was the greatest in the #P. At $6^{th}$ week after transplanting, the #O had the greatest growth of spinach in the plant height and fresh and dry weights of shoot. The total phenolic contents significantly increased in the #O and showed significantly difference. However, there was no significant difference all treatments in antioxidant activity. Therefore, these results suggest that the #O was suitable for the growth and phytochemical accumulation of spinach in a closed-type plant production system.

키워드

참고문헌

  1. Ahn, J. H., C. Y. Park, J. S. Ryu, and Y. I. Jin. 2008. Distribution mapping for optimal of highland agricultural zone in current and global warming future in Korea. In Proceeding of 10th Conference on Agricultural and Forest Meteorology, Jinju, Korea, Korean Society of Agricultural and Forest Meteorology 17(1):82-86.
  2. Kim, D. E., H. J. Lee, D. H. Kang, G. I. Lee, and Y. H. Kim. 2013. Effects of artificial light sources on the photosynthesis, growth and phytochemical contents of butterhead lettuce (Lactuca sativa L.) in the plant factory. Protected Hort. Plant Fac. 22(4):392-399. (in Korean) https://doi.org/10.12791/KSBEC.2013.22.4.392
  3. Kim, H. R., and Y. H. You. 2013. Effects of red, blue, white, and far-red LED source on growth responses of Wasabia japonica seedlings in plant factory. Korean J. Hortic. Sci. Technol. 31(4):415-422. (in Korean) https://doi.org/10.7235/hort.2013.13011
  4. Kim, Y. J., H. M. Kim, and S. J. Hwang. 2016. Growth and phytochemical contents of ice plant as affected by light quality in a closed-type plant production system. Korean J. Hortic. Sci. Technol. 34(6):878-885. (in Korean)
  5. Lee, G. I., H. J. Kim, S. J. Kim, J. W. Lee, and J. S. Park. 2016. Increased growth by LED and accumulation of functional materials by florescence lamps in a hydroponics culture system for Angelica gigas. Protected Hort. Plant Fac. 25(1):42-48. (in Korean) https://doi.org/10.12791/KSBEC.2016.25.1.42
  6. Lee, J. E., Y. S. Shin, J. D. Cheung, H. W. Do, and Y. H. Kang. 2015. Effect of LED light sources and their installation method on the growth of strawberry plants. Protected Hort. Plant Fac. 24(2):106-112. (in Korean) https://doi.org/10.12791/KSBEC.2015.24.2.106
  7. Lee, J. S., and Y. H. Kim. 2014. Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Korean J. Hortic. Sci. Technol. 32(3):330-339. (in Korean) https://doi.org/10.7235/hort.2014.13152
  8. Leskovar, D. I., V. Esensee, and H. B. Belefant-Miller. 1999. Pericarp, leachate, and carbohydrate involvement in thermoinhibition of germinating spinach seeds. J. Amer. Soc. Hortic. Sci. 124(3):301-306.
  9. Longnecker. M. P., P. A. Newcomb, R. Mittendorf, E. R. Greenberg, and W. C. Willett. 1997. Intake of carrots, spinach, and supplements containing vitamin A in relation to risk of breast cancer. Cancer Epidemiol. Biomarkers Prev. 6:887-892.
  10. Manivannan, A., P. Soundararajan, N. Halimah, C. H. Ko, and B. R. Jeong. 2015. Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic. Environ. Biotechnol. 56(1):105-113. https://doi.org/10.1007/s13580-015-0114-1
  11. Park, J. E., Y. G. Park, B. R. Jeong, and S. J. Hwang. 2013. Growth of lettuce in closed-type plant production system as affected by light intensity and photoperiod under influence of white LED light. Protected Hort. Plant Fac. 22(3):228-233. (in Korean) https://doi.org/10.12791/KSBEC.2013.22.3.228
  12. Seo, J. B., K. J. Choi, P. R. Ahn, H. K. Lim, and S. J. Hong. 2005. Effect of cultivars and planting distance on growth and yield of spinach for hydroponic cultivation in autumn season. J. Bio-Env. Con. 14(3) 155-159.
  13. Son, K. H., J. H. Park, D. I. Kim, and M. M. Oh. 2012. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J. Hortic. Sci. Technol. 30(6):664-672. (in Korean) https://doi.org/10.7235/hort.2012.12063
  14. Takatsuji M. 2008. Definition and meaning of the plant factory. P. 8-13. In Takatsuji, M. (ed.) Plant factory. World Science Publishment, Seoul.
  15. Woo, Y. H., J. M. Lee, and Y. S. Kwon. 1996. Analysis of major environmental factors and growth response of spinach (Spinacia oleracea) as affected by fog system and shading in summer plastic house. Hortic. Environ. Biotechnol. 37(5):638-644. (in Korean)
  16. Yu, L., S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian. 2002. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 50(6):1619-1624. https://doi.org/10.1021/jf010964p
  17. Zhang, D., D. G. Hendricks, and A. W. Mahoney. 1989. Bioavailability of total iron from meat, spinach (Spinacea oleracea L.) and meat-spinach mixtures by anaemic and nonanaemic rats. British J. Nutrition. 61:331-343. https://doi.org/10.1079/BJN19890121