DOI QR코드

DOI QR Code

Overview and Future Concerns for Red Mud Recycling Technology and Industry

알루미나 제조 공정 산출물 레드머드의 재활용 현황과 기술개발 동향 분석

  • Hong, Hyun-Seon (Sungshin Women's University, Dept. of Environment & Energy Engineering) ;
  • Kim, Ye-lin (Sungshin Women's University, Dept. of Environment & Energy Engineering) ;
  • Cho, Hyun-Jung (Sungshin Women's University, Dept. of Environment & Energy Engineering) ;
  • Kim, Dae-Weon (Institute for Advanced Engineering) ;
  • Kim, Dae-woong (KC corporation) ;
  • Kim, Hyeong-Jun (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Yong (PISCO Co.) ;
  • Kim, Sung-pyo (Korea University, Dept. of Environmental Engineering)
  • Received : 2017.08.23
  • Accepted : 2017.10.16
  • Published : 2017.10.31

Abstract

Red mud generated in the alumina manufacturing process contains various valuable resources, but it is not comprehensively recycled yet causing severe environmental problems. In Korea, red mud is producing about 200,000 tons annually and most of them are landfilled or disposed. Red mud's recycling technology is also being developed in many countries, but red mud's recycling technologies are still lacking compared to the production rate. In this study, we analyzed the characteristics and the amount of red mud, and the current status and technology development trend. Red mud has shown that recycling studies are being carried out in fields such as construction, recycling, metal recovery, adsorbent, and pollution stabilization. In particular, technologies for recovering rare earths have been developed as worldwide because of their high economic value. The data analyzed in this study will be used as basic data for the further development of technologies in the future.

알루미나 제조공정 부산물인 레드머드는 여러 가지 유용한 자원을 포함하고 있음에도 불구하고 아직까지 재활용되지 않고 있어 환경문제를 야기하고 있다. 현재 우리나라에서 레드머드가 매년 약 20만 톤 이상을 생산하고 있으며 대부분이 야적되고 있는 실정이다. 글로벌하게 보면 최근 중국의 알루미나 생산량이 증가함에 따라 전 세계에서 발생하는 레드머드의 양은 1억 톤 이상으로 꾸준히 증가하고 있다. 레드머드의 재활용 기술은 우리나라를 비롯한 많은 국가에서도 개발되고 있지만, 재활용 및 처리 기술은 여전히 레드머드의 생산증가 속도에 비해 미흡한 실정이다. 본 논문에서는 레드머드와 관련된 특허, 논문, 기술보고서를 내용별 연도별로 분석하였다. 또한 국내 산출 레드머드의 물성 분석을 통해 기초 소재특성 자료를 제공하였고 국내외 레드머드 재활용의 실용화 추진 사례를 분석하여 실용화 기술 개발 가능성을 제시하였다. 특히 레드머드에서 희토류를 회수하는 기술, 환경오염 방지제 기술 등은 수요가 높고 경제적 가치가 높기 때문에 전 세계적으로 개발되고 있는 것으로 파악되었다. 이처럼 본 연구에서 도출된 레드머드의 기술개발 사례 등의 자료는 향후 고부가가치의 실용적 연구 및 기술 개발에 기여할 것으로 판단된다.

Keywords

References

  1. Wanchao, L., Jiakuan, Y., and Xiao, B., 2009 : Review on treatment and utilization of bauxite residues in China, Miner. Process, 93, pp.220-231. https://doi.org/10.1016/j.minpro.2009.08.005
  2. Paramguru, R. K., 2005 : Trends in Redmud Utilization, A Review, Mineral Processing & Extractive Metall. Rev., 26, pp.1-29.
  3. Sutar1, H., 2014 : Progress of Redmud Utilization: An Overview, American Chemical Science Journal, 4(3), pp.255-279. https://doi.org/10.9734/ACSJ/2014/7258
  4. Power, G., Grafe, M., and Klauber, C., 2011 : Review of current bauxite residue management, disposal and storage practices, engineering and science, Hydrometallurgy, 108(1-2), pp.33-45. https://doi.org/10.1016/j.hydromet.2011.02.006
  5. Liu, Y. and Ravi, N., 2014 : Hidden values in bauxite residue (red mud) Recovery of metals, journal of Waste Management, 34(12), pp.2662-2673. https://doi.org/10.1016/j.wasman.2014.09.003
  6. Wang, P. and Liu, D. Y., 2012 : Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization, Materials, 5, pp.1800-1810. https://doi.org/10.3390/ma5101800
  7. Rai, S., 2012 : Neutralization and utilization of red mud for its better waste management, Arch. Environ. Sci., pp.13-33.
  8. Poulin, E., Blais, J. F., and Mercier, G., 2012 : Transformation of red mud from aluminium industry into a coagulant for wastewater treatment, Hydrometallurgy, 92, pp.16-25.
  9. Koumanova, B., Drame, B., and Popangelova, M., 1997 : Phosphate removal from aqueous solutions using red mud wasted in bauxite Bayer's process, Resources Conservation and Recycling, 19(1), pp.11-20. https://doi.org/10.1016/S0921-3449(96)01158-5
  10. Yalceon, N. and Sevince, V., 2000 : Utilization of bauxite waste in ceramic glazes, Ceramics International, 26, pp.485-493. https://doi.org/10.1016/S0272-8842(99)00083-8
  11. Jung, D. Y., 2007 : An Experimental Study on the ecofriendly concrete color development with industrial waste red mud, Journal of the Korea Environment, 16(8), pp.929-939.
  12. Kim, H. J., 2012 : A Study on the Chemical Properties and Application of Red mud, Master's Thesis, Chonnam National University, Korea.
  13. Lim, G. H., 2012 : Study on recovery of valuable matals from red mud, Graduate school thesis, Hanseo University, Korea
  14. Kim, J. O., 2000 : Basic study on ceramic artificial fish with Red mud as raw material, Master's Thesis, Chonnam National University, Korea
  15. Bae, I. Y., 2005 : Preparation of hyposulfite alumina using activated alumina, Master's Thesis, Chonnam National University, Korea
  16. Sayan, E. and Bayramog lum, M., 2004 : Statistical modeling and optimization of ultrasound-assisted sulfuric acid leaching of $TiO_2$ from red mud, Hydrometallugy, 71, pp.397-401. https://doi.org/10.1016/S0304-386X(03)00113-0
  17. Mercier, H., 1974 : Optimization of the Alkaline treatment of the different Bauxite Varieties, Light metals, pp776-786.
  18. Paga, L., 1993 : Recovering metals from red mud generated during Alumina production, Journal of Hazardous Material, 45(11), pp.54-59.
  19. Grafe, M. and Klauber, C., 2011 : Bauxite residue issues IV. Old obstacles and new pathways for in situ residue bioremediation, Hydrometallugy, 108(1-2), pp.56-59.
  20. Agatzini-Leonardou, S., Oustadakis, P., Tsakiridis, P., and Markopoulos, Ch., 2008 : Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure, Journal of Hazardous Material, 157, pp.579-586. https://doi.org/10.1016/j.jhazmat.2008.01.054
  21. Grafe, M., Pang, D., Power, G., and Klauber, C., 2009 : Residue and Disposal Database, CSIRO-Minerals
  22. Torricelli, 2005 : Reuse of a treated red mud bauxite waste studies on environmental compatibility, Journal of Hazardous Material, 117, pp.55-63. https://doi.org/10.1016/j.jhazmat.2004.09.010
  23. Whan, A. J., Thriveni, T., and Nam, S. N., 2015 : Sustainable recycling technologies for bauxite residue (red mud) utilization, journal of Energy Technology, pp.173-179.
  24. Henna, R. B., Yiannis, P., Koen, B., and Tom, V. G., 2015 : Leaching of rare earths from bauxite residue (red mud), journal of Minerals Engineering, 76, pp.20-27. https://doi.org/10.1016/j.mineng.2015.01.005
  25. Habashi, F., 1998 : A Hundred Years of Bayer Process for Alumina Production, Lightmetals, pp.85-93.
  26. Andre, R. H., Suresh, K. B., and Stephen, C. G., 1999 : The surface chemistry of Bayer process solids: a review, Colloids and Surface, 146, pp.359-374. https://doi.org/10.1016/S0927-7757(98)00798-5
  27. Ochsenkuhn-Petropoulou, M. T., 2002 : Pilot-plant investigation of the leaching process for the recovery of scandium from red mud, Industrial & Engineering Chemistry Research, 41(23), pp.5794. https://doi.org/10.1021/ie011047b
  28. Wang, W., Pranolo, Y., and Cheng, C. Y., 2011: Metallurgical process for scandium recovery from various resources: a review, Hydrometallurgy, 108(1-2), pp.100. https://doi.org/10.1016/j.hydromet.2011.03.001
  29. Ahmad, Z., 2003 : The properties and applications of scandium-reinforced aluminum. JOM, 55(2), pp.35. https://doi.org/10.1007/s11837-003-0224-6
  30. Ciacchi, F. T., Badwal, S. P., and Drennan, J., 1991 : The system $Y_2O_3-Sc_2O_3-ZrO_2$: phase characterisation by XRD, TEM and potical microscopy, J. Eur. Ceram. Soc., 7(3), pp.185. https://doi.org/10.1016/0955-2219(91)90036-Y
  31. Ochsenkuhn-Petropulu, M., 1996 : Recovery of lanthanides and yttrium from red mud by selective leaching, Anal Chim Acta, 319(1-2), pp.249. https://doi.org/10.1016/0003-2670(95)00486-6
  32. Xue, A., Chen, X., and Tang, X., 2010 : The technological study and leaching kinetics of scandium from red mud, Nonferrous Metal Extract Metal, 2, pp.51.
  33. Zhang, J., Deng, Z., and Xu, T., 2005 : Experimental investigation on leaching metals from red mud, Light Met, 2, pp.13.
  34. Wang, K., Yu, Y., Wang, H., and Chen, J., 2010 : Experimental investigation on leaching scandium from red mud by hydrochloric acid, Chin Rare Earths, 31(1), pp.95.
  35. Xu, L., 2015 : Study of scandium pre-enrichment from red mud leached by hydrochloric acid, Nonferrous Met, 1, pp.54.
  36. Tang, X., Chen, X., and Xue, A., 2010 : Research on leaching kinetics of scandium from red mud, Hydrometall China, 29(3), pp.155.
  37. Borra, C. R., 2015 : Leaching of rare earths from bauxite residue (red mud), Miner Eng, 76, pp.20. https://doi.org/10.1016/j.mineng.2015.01.005
  38. Zhang, J., Deng, Z., and Xu, T., 2006 : Recovery scandium from leaching liquor of red mud, Light Met, 7, pp.16.
  39. Wang, W., Pranolo, Y., and Cheng, C. Y., 2013 : Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA, Sep Purif Technol, 108, pp.96. https://doi.org/10.1016/j.seppur.2013.02.001
  40. Lee, J. R., Hwang, I. G., and Bae, J. H., 2006 : Preparation of adsorbent reutilizing the leachend sludge of red med, Clean Technology, 12(3), pp.171-174.
  41. Min, B. H., 2002 : A study on adsorbent manufacture for removal of VOC by recycling of paper sludge and red mud, Clean Technology, 8(2), pp.61-66.
  42. Um, B. H., 2013 : Fluoride removal from aquous solutions using industrial waste red mud, J. Kor. Soc. of Agricutural Eng, 55(3), pp.35-40.
  43. Lee, S. H., 2009 : In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments, Chemosphere, 77, pp.1069-1075. https://doi.org/10.1016/j.chemosphere.2009.08.056
  44. Jang, K. Y., 2014 : Fishery Resources Development Project Status.
  45. Lee, J. L., Whang, I. K., and Bae, J. H., 2003 : Study on Precipitation and Coagulation Characteristics of Phosphate and Heavy Metal Ions by Red Mud Coagulant, Environmental engineering paper, 25, pp.472-479.
  46. Lee, K. L., 2011 : Construction materials using industrial waste and manufacturing method thereof, Korea
  47. ChangShin industrial development, 2017 : Artificial reef, cstriton, http://cstriton.com/sub02/02_03_a.php

Cited by

  1. A Value-Added Synthetic Process Utilizing Mining Wastes and Industrial Byproducts for Wear-Resistant Glass Ceramics vol.8, pp.5, 2017, https://doi.org/10.1021/acssuschemeng.9b05884