References
- Andersen, T. G. and Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial markets, Journal of Empirical Finance, 4, 115-158. https://doi.org/10.1016/S0927-5398(97)00004-2
- Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modelling and forecasting realized volatility, Econometrics, 71, 579-625. https://doi.org/10.1111/1468-0262.00418
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Choi, S. M., Hong, S. Y., Choi, M. S., Park, J. A., Baek, J. S., and Hwang, S. Y. (2009). Analysis of multivariate-GARCH via DCC modeling, Korean Journal of Applied Statistics, 22, 995-1005. https://doi.org/10.5351/KJAS.2009.22.5.995
- Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrics, 50, 987-1007. https://doi.org/10.2307/1912773
- Engle, R. F. (2002). Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal of Business and Economic Statistics, 20, 339-350. https://doi.org/10.1198/073500102288618487
- Lee, G. J. and Hwang, S. Y. (2017). Multivariate volatility for high-frequency financial series, The Korean Journal of Applied Statistics, 30, 169-180. https://doi.org/10.5351/KJAS.2017.30.1.169
- Hansen, P. R. and Lunde, A. (2006). Realized variance and market microstructure noise, Journal of Business & Economic Statistics, 24, 127-161. https://doi.org/10.1198/073500106000000071
- Hwang, S. Y., Choi, M. S., and Do, J. D. (2009). Assessments for multivariate-GARCH models using backtesting: case study, Korean Journal of Applied Statistics, 22, 261-270. https://doi.org/10.5351/KJAS.2009.22.2.261
- Oh, R. and Shin, D. W. (2012). Market microstructure noise and optimal sampling frequencies for the realized variances of stock prices of four leading Korean companies, Korean Journal of Applied Statistics, 25, 15-27. https://doi.org/10.5351/KJAS.2012.25.1.015
- Seong, W. H. (1997). Applied Multivariate Analysis: Theory, Methods, SAS Application, Tamjin, Seoul.
- Tsay, R. S. (2010). Analysis of Financial Time Series (3rd ed), John Wiley, New York.
- Tsay, R. S. (2014). Multivariate Time Series Analysis With R and Financial Application, John Wiley, New York.
- Xiao, L. (2013). Realized volatility forecasting : empirical evidence from stock market indices and exchange rates, Applied Financial Economics, 23, 57-69. https://doi.org/10.1080/09603107.2012.707769
- Yoon, J .E. and Hwang, S. Y. (2015). Volatility computations for financial time series: high frequency and hybrid method, Korean Journal of Applied Statistics, 28, 1163-1170. https://doi.org/10.5351/KJAS.2015.28.6.1163
- Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates, Journal of Business & Economic Statistics, 14, 45-52.