DOI QR코드

DOI QR Code

산소공공을 이용한 V2O5 저항성 메모리의 전기적인 동작특성 해석

Electrical Characteristics Analysis of Resistive Memory using Oxygen Vacancy in V2O5 Thin Film

  • Oh, Teresa (Department of Semicnoductor Engineering, Cheongju University)
  • 투고 : 2017.06.20
  • 심사 : 2017.08.12
  • 발행 : 2017.10.31

초록

본 연구는 산화물반도체의 저항을 이용한 메모리소자를 만들기 위해서 $V_2O_5$ 를 산소가스를 이용하여 증착하고 열처리를 하였다. 산소의 유량이 많을수록 산소공공의 형성을 위하여 높은 열처리온도가 필요하였으며, 산소공공은 쇼키접합을 형성하면서 전기적인 특성이 저항성 메모리소자에 적합한 구조로 만들어지고 있었다. $V_2O_5$ 박막은 열에 의한 이온화 반응에 의하여 산소공공이 형성되었으며, 전압 혹은 전류제어 가능한 저항성 메모리 소자를 위하여 쇼키접합이 +전압과 -전압에서 균형있게 이루어지는 것이 요구되며, 쇼키접합은 150도 혹은 200도에서 열처리가 이루어진 경우 쇼키접합이 잘 형성되는 것을 확인할 수 있었다. $V_2O_5$ 음이온인 산소공공은 역방향전압 혹은 순방향 전압인지에 따라서 저항이 변하면서 쓰기/지우기 상태로 전기적인 동작이 이루어졌으며 저항성메모리로서 구동을 하는 것을 확인하였다.

To observe the characteristics to be a resistive memory of $V_2O_5$ deposited by oxygen various gas flows and annealed, the hysteresis curves of $V_2O_5$ were analyzed. The good resistive memory was obtained from the electrical characteristics of $V_2O_5$ films with the Schottky contact as a result of electron-hole pair, and the oxygen vacancy generated from the annealing process contributes the high quality of Schottky contact and the formation of resistive memories. The balanced Schottky contacts owing to the oxygen vacancy effect as the result of an ionic reaction were formed at the $V_2O_5$ film annealed at $150^{\circ}C$ and $200^{\circ}C$ and the balanced Schottky contact with negative to positive voltages enhanced the electrical operation with write/erase states according to the forward or reverse bias voltages for the resistive memory behavior due to the oxygen vacancy.

키워드

참고문헌

  1. T. Oh, "Tunneling Condition at High Schottky Barrier and Ambipolar Transfer Characteristics in Zinc Oxide Semiconductor Thin Film Transistor," Materials Research Bulletin, vol. 77, pp.1-7, May 2016. https://doi.org/10.1016/j.materresbull.2015.11.038
  2. R. I. Revilla, X. J. Li, Y. L. Yang, C. Wang, "Large electric field enhanced hardness effect in a $SiO_2$ film," Scientific Reports, vol. 4, 4523, Mar. 2014.
  3. J. C. K. Lam, M. Y. M. Huang, T. H. Ng, M. K. B. Dawood, F. Zhang, A. Du, H. Sun, Z. Shen, and Z. Mai1, "Evidence of ultra-low-k dielectric material degradation and nanostructure alteration of the Cu/ultra-low-k interconnects in time-dependent dielectric breakdown failure," Applied Physics Letters, vol. 102, 022908, Jan. 2013. https://doi.org/10.1063/1.4776735
  4. T. Oh, "Tunneling Phenomenon of Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors for Flexible Display," Electronic Materials Letters, vol. 11, pp. 853-861, Sep. 2015. https://doi.org/10.1007/s13391-015-4505-3
  5. J. H. Kim, J. B. Bang, J. H. Lee, and Y. S. Lee, "Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer," Journal of Sensor Science and Technology, vol. 24, no. 6, pp. 379-384, June 2015. https://doi.org/10.5369/JSST.2015.24.6.379
  6. J. Robertson, R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering R, vol. 88, pp.1-41, Nov. 2015. https://doi.org/10.1016/j.mser.2014.11.001
  7. D. H. Lee, S. M. Park, D. K. Kim, Y. S. Lim, and M. S. Yi, "Effects of Ga Composition Ratio and Annealing Temperature on the Electrical Characteristics of Solutionprocessed IGZO Thin-film Transistors," Journal of Semiconductor Technology and Science, vol. 14, no. 2, pp.163-168, Feb. 2014. https://doi.org/10.5573/JSTS.2014.14.2.163
  8. K. H. Lee, T. G. Kang, K, Y. Lee and J. T. Park, "Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 1, pp.82-89, Jan. 2017. https://doi.org/10.6109/jkiice.2017.21.1.82