DOI QR코드

DOI QR Code

Effect of the Sulfurization Temperature and Annealing Time of E-Beam Evaporated Sn Precursors on the Growth of SnSx Thin Films

E-빔 증착된 Sn 전구체의 황화 열처리 온도 및 시간에 따른 SnSx 박막 성장 효과

  • Huang, Tingjian (Department of Energy Convergence Engineering, Cheongju University) ;
  • Kim, Jeha (Department of Energy Convergence Engineering, Cheongju University)
  • 황팅지엔 (청주대학교 에너지융합학과) ;
  • 김제하 (청주대학교 에너지융합학과)
  • Received : 2017.08.22
  • Accepted : 2017.09.12
  • Published : 2017.11.01

Abstract

We prepared $SnS_x$ thin films on both soda-lime glass (SLG) and molybdenum(Mo)/SLG substrates by a two-step process using a Sn precursor followed by sulfur reaction in rapid thermal annealing (RTA) at different sulfurization temperatures ($Ts=200^{\circ}C$, $230^{\circ}C$, $250^{\circ}C$, and $300^{\circ}C$) and annealing times ($t_s=10min$ and 30 min). The single SnS phase was dominant for $200^{\circ}C{\leq}T_s$<$250^{\circ}C$, while an additional phase of $SnS_2$ was appeared at $T_s{\geq}250^{\circ}C$ alongside SnS. The SnS grains in all the samples showed strong growth along the preferred [040] direction. The band-gap energy ($E_g$) of the films was estimated to be 1.24 eV.

Keywords

References

  1. National Renewable Energy Laboratory (NREL), Best Research-cell Efficiencies (Online), https://www.nrel.gov/pv/assets/images/efficiency-chart.png (2017).
  2. N. Sato, M. Ichimura, E. Arai, and Y. Yamazaki, Sol. Energy Mater. Sol. Cells, 85, 153 (2005). [DOI: https://doi.org/10.1016/j.solmat.2004.04.014]
  3. M. Devika, N. K. Reddy, K. Ramesh, H. R. Sumana, K. R. Gunasekhar, E.S.R. Gopal, and K.T.R. Reddy, Semicond. Sci. Technol.. 21, 1495 (2006). [DOI: https://doi.org/10.1088/0268-1242/21/10/024]
  4. V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R. E. Brandt, J. R. Poindexter, Y. S. Lee, L. Sun, A. Polizzotti, H. H. Park, R. G. Gordon, and T. Buonassisi, Adv. Mater., 26, 7488 (2014). [DOI: https://doi.org/10.1002/adma.201402219]
  5. Y. Kawano, J. Chantana, and T. Minemoto, Curr. Appl. Phys., 15, 897 (2015). [DOI: https://doi.org/10.1016/ j.cap.2015.03.026]
  6. J. J. Loferski, J. Appl. Phys., 27, 777 (1956). [DOI: https://doi.org/10.1063/1.1722483]
  7. J. P. Singh and R. K. Bedi, Thin Solid Films, 199, 9 (1991). [DOI: https://doi.org/10.1016/0040-6090(91)90046-z]
  8. P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, and R. G. Gordon, Adv. Energy Mater., 4, 1400496 (2014). [DOI: https://doi.org/10.1002/aenm.201400496]
  9. C. Cifuentes, M. Botero, E. Romero, C. Calderon, G. Gordillo, Braz. J. Phys., 36, 1046 (2006). [DOI: https://doi.org/10.1590/s0103-97332006000600066]
  10. V.R.M. Reddy, S. Gedi, C. Park, R. W. Miles, and K.T.R. Reddy, Curr. Appl. Phys. 15, 588 (2015). [DOI: https://doi.org/10.1016/j.cap.2015.01.022]
  11. K. Hartman, J. L. Johnson, M. I. Bertoni, D. Recht, M. J. Aziz, M. A. Scarpulla, and T. Buonassisi, Thin Solid Films, 519, 7421 (2011). [DOI: https://doi.org/10.1016/j.tsf.2010.12.186]
  12. M. Ichimura, K. Takeuchi, Y. Ono, and E. Arai, Thin Solid Films, 361, 98 (2000). [DOI: https://doi.org/10.1016/s0040-6090(99)00798-1]
  13. K.T.R. Reddy, N. K. Reddy, and R. W. Miles, Sol. Energy Mater. Sol. Cells, 90, 3041 (2006). [DOI: https://doi.org/10.1016/j.solmat.2006.06.012]
  14. S. Gedi, V.R.M. Reddy, B. Pejjai, C. W. Jeon, C. Park, and K.T.R. Reddy, Appl. Surf. Sci., 372, 116 (2016). [DOI: https://doi.org/10.1016/j.apsusc.2016.03.032]
  15. S. Jung and J. Kim, J. Nanosci. Nanotechnol., 16, 5279 (2016). [DOI: https://doi.org/10.1166/jnn.2016.12196]
  16. C. W. Jeon, Proc. CIGS Thin Film Photovoltaics Workshop 2015 (Korean Photovoltaics Society, Busan, 2015) p. 187.
  17. R. Caballero, V. Conde, and M. Leon, Thin Solid Films, 612, 202 (2016). [DOI: https://doi.org/10.1016/j.tsf.2016.06.018]