DOI QR코드

DOI QR Code

Relationship between dairy products, fish and shellfish intake and metabolic syndrome risk factors in prediabetes: based on the sixth Korea National Health and Nutrition Examination Survey (KNHANES VI-3) 2015

전당뇨병 대상자의 유제품 및 어패류 섭취와 대사증후군 위험인자와의 관련성 연구 : 2015년 제 6기 국민건강영양조사 자료를 바탕으로

  • Received : 2017.06.30
  • Accepted : 2017.08.31
  • Published : 2017.10.31

Abstract

Purpose: Metabolic Syndrome (MetS) is defined as a cluster of inter-connected metabolic disorders involving the glucose metabolism, dyslipidaemia, high blood pressure, and abdominal obesity. The worldwide prevalence has been rapidly increasing to approximately 20~25%, and the prevalence in Korea as of 2012 was reported to be 31.3%. The association of MetS with various diseases needs to be analyzed by conducting an investigation of frequently consumed foods, such as dairy products, fish, and shellfish in prediabetic subjects. Methods: The dietary intake of subjects who met the criteria of the study from January to December 2015 was assessed using the 24-hour recall method. After adjusting the age, sex, BMI, and total energy intake, which are confounding factors that may affect the dietary intake of the subjects, the associations of dairy products, fish, and shellfish intake with the MetS risk factors was analyzed. Results: In prediabetes, the intake of subjects who consumed more than the dairy products median (187.0 g) and the elevation risk of TC [OR, 2.369; 95% CI, 1.057 to 5.312] showed a significant positive association. In prediabetes, the intake of subjects who consumed more than the fish and shellfish median (44.0 g) and the elevation risk of BP showed a significantly weak negative association [OR, 0.073; 95% CI, 0.010 to 0.520]. The probability that the blood LDL cholesterol was ${\geq}100mg/dL$ decreased 0.397 times [95% CI, 0.189 to 0.832]. Conclusion: To control the metabolic risk factors of pre-diabetic and vascular disease subjects, proper dairy, fish and shellfish intake will be important.

본 연구는 2015년 KNHANES 자료를 이용하여 30~64세 전당뇨병 대상자들의 유제품 및 어패류의 식품섭취와 대사증후군 위험인자와의 관련성을 분석하였다. 전당뇨병군과 혈당 정상군의 일반적인 특성에서 대사증후군 위험인자 관련 생화학적 지표가 유의적 차이를 보였다. 전당뇨병군의 유제품 섭취량에 따라 분석한 결과, 유제품 섭취 중앙값 (187.0 g) 이상 대상자의 대사증후군 위험인자 중 혈중 TC 수준과 양의 연관성을 보였다. 총 에너지 섭취량, 탄수화물, 단백질, 지방, MUFAs 및 무기질 섭취량은 중앙값 이상 대상자에서 유의적으로 높았으나, 대사증후군 위험인자에 대한 보호효과는 유의적이지 않았다. 어패류 섭취량에 따른 대사증후군 위험인자와의 연관성을 분석한 결과 BP와 혈중 LDL-C 수준은 중앙값 이상 섭취하였을 때 상승할 확률이 유의적으로 감소하였다. 따라서 섭취 유제품의 유형과 함유성분을 고려한 연구 수행이 필요할 것으로 보이며, 어패류는 식사의 반찬으로 제공되는 경우가 많기 때문에 적절한 섭취량 뿐 아니라 조리방법과 함께 섭취하는 식품에 대한 추가 분석을 수행하여 건강에 미치는 효과를 명확하게 규명할 연구수행이 수반되어야 할 것이다.

Keywords

References

  1. Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A. Prevalence and trends of metabolic syndrome among adults in the Asia-pacific region: a systematic review. BMC Public Health 2017; 17(1): 101. https://doi.org/10.1186/s12889-017-4041-1
  2. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH. The metabolic syndrome. Endocr Rev 2008; 29(7): 777-822. https://doi.org/10.1210/er.2008-0024
  3. International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome [Internet]. Brussels: International Diabetes Federation; 2006 [cited 2016 Dec 25]. Available from: http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf.
  4. Hydrie MZ, Shera AS, Fawwad A, Basit A, Hussain A. Prevalence of metabolic syndrome in urban Pakistan (Karachi): comparison of newly proposed International Diabetes Federation and modified Adult Treatment Panel III criteria. Metab Syndr Relat Disord 2009; 7(2): 119-124. https://doi.org/10.1089/met.2008.0055
  5. Mohamud WN, Ismail AA, Sharifuddin A, Ismail IS, Musa KI, Kadir KA, Kamaruddin NA, Yaacob NA, Mustafa N, Ali O, Harnida S, Bebakar WM. Prevalence of metabolic syndrome and its risk factors in adult Malaysians: results of a nationwide survey. Diabetes Res Clin Pract 2011; 91(2): 239-245. https://doi.org/10.1016/j.diabres.2010.11.025
  6. Park SY, Park YK, Cho KH, Choi HJ, Han JH, Han KD, Han BD, Yoon YJ, Kim YH. Normal range albuminuria and metabolic syndrome in South Korea: the 2011-2012 Korean National Health and Nutrition Examination Survey. PLoS One 2015; 10(5): e0125615. https://doi.org/10.1371/journal.pone.0125615
  7. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33 Suppl 1: S62-S69. https://doi.org/10.2337/dc10-S062
  8. Abdul-Ghani M, DeFronzo RA, Jayyousi A. Prediabetes and risk of diabetes and associated complications: impaired fasting glucose versus impaired glucose tolerance: does it matter? Curr Opin Clin Nutr Metab Care. Forthcoming 2016.
  9. Gerstein HC, Santaguida P, Raina P, Morrison KM, Balion C, Hunt D, Yazdi H, Booker L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract 2007; 78(3): 305-312. https://doi.org/10.1016/j.diabres.2007.05.004
  10. Lee HY, Lee JI. Study on consumers' perception and consumption affected by negative broadcast about milk. J Agric Life Environ Sci 2016; 28(3): 10-16.
  11. Gilbert JA, Bendsen NT, Tremblay A, Astrup A. Effect of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis 2011; 21 Suppl 2: B16-B31. https://doi.org/10.1016/j.numecd.2010.12.008
  12. Astrup A, Raben A, Geiker N. The role of higher protein diets in weight control and obesity-related comorbidities. Int J Obes (Lond) 2015; 39(5): 721-726. https://doi.org/10.1038/ijo.2014.216
  13. Booth AO, Huggins CE, Wattanapenpaiboon N, Nowson CA. Effect of increasing dietary calcium through supplements and dairy food on body weight and body composition: a meta-analysis of randomised controlled trials. Br J Nutr 2015; 114(7): 1013-1025. https://doi.org/10.1017/S0007114515001518
  14. Pereira MA, Jacobs DR Jr, Van Horn L, Slattery ML, Kartashov AI, Ludwig DS. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 2002; 287(16): 2081-2089. https://doi.org/10.1001/jama.287.16.2081
  15. Fumeron F, Lamri A, Abi Khalil C, Jaziri R, Porchay-Balderelli I, Lantieri O, Vol S, Balkau B, Marre M; Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) Study Group. Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: results from a French prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2011; 34(4): 813-817. https://doi.org/10.2337/dc10-1772
  16. Louie JC, Flood VM, Rangan AM, Burlutsky G, Gill TP, Gopinath B, Mitchell P. Higher regular fat dairy consumption is associated with lower incidence of metabolic syndrome but not type 2 diabetes. Nutr Metab Cardiovasc Dis 2013; 23(9): 816-821. https://doi.org/10.1016/j.numecd.2012.08.004
  17. Hu D, Huang J, Wang Y, Zhang D, Qu Y. Dairy foods and risk of stroke: a meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 2014; 24(5): 460-469. https://doi.org/10.1016/j.numecd.2013.12.006
  18. Zhang J, Wang C, Li L, Man Q, Meng L, Song P, Froyland L, Du ZY. Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle-aged and elderly Chinese women. Br J Nutr 2012; 108(8): 1455-1465. https://doi.org/10.1017/S0007114511006866
  19. Saravanan P, Davidson NC, Schmidt EB, Calder PC. Cardiovascular effects of marine omega-3 fatty acids. Lancet 2010; 376(9740):540-550. https://doi.org/10.1016/S0140-6736(10)60445-X
  20. Moore CS, Bryant SP, Mishra GD, Krebs JD, Browning LM, Miller GJ, Jebb SA. Oily fish reduces plasma triacylglycerols: a primary prevention study in overweight men and women. Nutrition 2006; 22(10): 1012-1024. https://doi.org/10.1016/j.nut.2006.07.005
  21. Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture [Internet]. Rome: Food and Agriculture Organization of the United Nations; year [cited 2016 Jan 7]. Available from: http://www.fao.org/3/a-i5555e.pdf.
  22. Montonen J, Jarvinen R, Heliovaara M, Reunanen A, Aromaa A, Knekt P. Food consumption and the incidence of type II diabetes mellitus. Eur J Clin Nutr 2005; 59(3): 441-448. https://doi.org/10.1038/sj.ejcn.1602094
  23. Boon N, Hul GB, Stegen JH, Sluijsmans WE, Valle C, Langin D, Viguerie N, Saris WH. An intervention study of the effects of calcium intake on faecal fat excretion, energy metabolism and adipose tissue mRNA expression of lipid-metabolism related proteins. Int J Obes (Lond) 2007; 31(11): 1704-1712. https://doi.org/10.1038/sj.ijo.0803660
  24. Ricci-Cabello I, Herrera MO, Artacho R. Possible role of milkderived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr Rev 2012; 70(4): 241-255. https://doi.org/10.1111/j.1753-4887.2011.00448.x
  25. Zemel MB, Richards J, Mathis S, Milstead A, Gebhardt L, Silva E. Dairy augmentation of total and central fat loss in obese subjects. Int J Obes (Lond) 2005; 29(4): 391-397. https://doi.org/10.1038/sj.ijo.0802880
  26. Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, Cegan A, Elcnerova M, Schleicher E, Fritsche A, Haring HU. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care 2010; 33(2): 405-407. https://doi.org/10.2337/dc09-0544
  27. Pinnick KE, Neville MJ, Fielding BA, Frayn KN, Karpe F, Hodson L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes 2012; 61(6): 1399-1403. https://doi.org/10.2337/db11-1810
  28. Fabbrini E, Magkos F, Su X, Abumrad NA, Nejedly N, Coughlin CC, Okunade AL, Patterson BW, Klein S. Insulin sensitivity is not associated with palmitoleate availability in obese humans. J Lipid Res 2011; 52(4): 808-812. https://doi.org/10.1194/jlr.M013599
  29. Hirahatake KM, Slavin JL, Maki KC, Adams SH. Associations between dairy foods, diabetes, and metabolic health: potential mechanisms and future directions. Metabolism 2014; 63(5): 618-627. https://doi.org/10.1016/j.metabol.2014.02.009
  30. Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One 2012; 7(11): e48852. https://doi.org/10.1371/journal.pone.0048852
  31. Aune D, Norat T, Romundstad P, Vatten LJ. Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr 2013; 98(4): 1066-1083. https://doi.org/10.3945/ajcn.113.059030
  32. Ministry of Food and Drug Safety (KR). Food safety country [Internet]. Cheongju: Ministry of Food and Drug Safety; [cited 2011 Jun 30]. Available from: http://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodnutrient/simpleSearch.do?menu_grp=MENU_NEW03&menu_no=2805.
  33. U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015-2020 Dietary guidelines for Americans. 8th ed. [Internet]. Washington, D.C.: U.S. Department of Agriculture; 2015 [cited 2015 Aug 6]. Available from: http://health.gov/dietaryguidelines/2015/guidelines/.
  34. Kratz M, Baars T, Guyenet S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur J Nutr 2013; 52(1): 1-24. https://doi.org/10.1007/s00394-012-0418-1
  35. Ministry of Health and Welfare (KR); The Korean Nutrition Society. Dietary reference intakes for Koreans 2015. Sejong: Ministry of Health and Welfare; 2016.
  36. Salas-Salvado J, Martinez-Gonzalez MA, Bullo M, Ros E. The role of diet in the prevention of type 2 diabetes. Nutr Metab Cardiovasc Dis 2011; 21 Suppl 2: B32-B48. https://doi.org/10.1016/j.numecd.2011.03.009
  37. Larsson SC, Orsini N. Fish consumption and the risk of stroke: a dose-response meta-analysis. Stroke 2011; 42(12): 3621-3623. https://doi.org/10.1161/STROKEAHA.111.630319
  38. Rustan AC, Nossen JO, Christiansen EN, Drevon CA. Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A:1,2-diacylglycerol acyltransferase. J Lipid Res 1988; 29(11): 1417-1426.
  39. Maas AH, Franke HR. Women's health in menopause with a focus on hypertension. Neth Heart J 2009; 17(2): 68-72. https://doi.org/10.1007/BF03086220
  40. Yin K, Chu ZM, Beilin LJ. Blood pressure and vascular reactivity changes in spontaneously hypertensive rats fed fish oil. Br J Pharmacol 1991; 102(4): 991-997. https://doi.org/10.1111/j.1476-5381.1991.tb12289.x
  41. Lee SW, Koo ES, Kim BS, Kang JH, Lee MH, Park JR, Shin HC, Jung HW, Lee HS. The relationships between blood pressure and serum lipids in Korean adults. Korean Circ J 1998; 28(9): 1552-1560. https://doi.org/10.4070/kcj.1998.28.9.1552
  42. Casanova MA, Medeiros F, Trindade M, Cohen C, Oigman W, Neves MF. Omega-3 fatty acids supplementation improves endothelial function and arterial stiffness in hypertensive patients with hypertriglyceridemia and high cardiovascular risk. J Am Soc Hypertens 2017; 11(1): 10-19. https://doi.org/10.1016/j.jash.2016.10.004
  43. Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther 2016; 7(2): 203-219. https://doi.org/10.1007/s13300-016-0167-x