DOI QR코드

DOI QR Code

성인을 대상으로 D-리보오스 함유 비율을 달리한 설탕 섭취에 따른 Glycemic Index 및 혈당 반응 연구

Comparing the effects of intake of sugar containing different levels of D-ribose in sugar on glycemic index and blood glucose response in healthy adults

  • 김아름 (국민대학교 식품영양학과) ;
  • 이정숙 (국민대학교 식품영양학과) ;
  • 남혜경 (국민대학교 식품영양학과) ;
  • 경명옥 (대한제당(주) 중앙연구소) ;
  • 서승우 (대한제당(주) 중앙연구소) ;
  • 장문정 (국민대학교 식품영양학과)
  • 투고 : 2017.09.07
  • 심사 : 2017.09.26
  • 발행 : 2017.10.31

초록

본 연구는 10 주 동안 건강한 20대 성인 남녀 14명을 대상으로 D-리보오스 함유 비율이 다른 설탕 (D-리보오스 5%, 10%, 14% 함유) 섭취가 혈당 반응과 GI에 미치는 영향을 분석하여 혈당 저감화 효과를 확인하고자 하였다. 설탕과 D-리보오스함유 설탕의 혈당반응값을 비교하였을 때 D-리보오스 함유 설탕인 RB5, RB10, RB14 순으로 낮아졌으며 RB10, RB14는 설탕에 비해 유의적으로 낮은 혈당반응값을 보였다. 백설탕, RB5, RB10, RB14의 GI는 각각 67.39, 67.07, 47.57, 45.62로 설탕과 RB5는 중 GI 식품으로, RB10과 RB14는 저 GI 식품으로 분류되었으며, RB10, RB14의 GI는 설탕과 RB5의 GI에 비해 유의적으로 낮았다. 혈당 변화에 따른 Cmax를 보면 포도당 61.73 mg/dL에 비해 RB5, RB10, RB14가 각각 49.43 mg/dL, 37.25 mg/dL, 35.15 mg/dL로 유의적으로낮았으나, 설탕의 Cmax 58.18 mg/dL과 비교 시 RB10, RB14의 Cmax는 유의적으로 낮았으나, RB5와는 유의적인 차이를 보이지 않았다. 따라서 D-리보오스 함유 설탕의 혈당 상승 억제 효과는 D-리보오스를 5% 함유 시 보다는 D-리보오스를 10% 이상 함유할 때 더 효과적인 것으로 나타났다. 그러나 D-리보오스를 10%, 14% 함유한 설탕의 GI값과 혈당 변화율이 유사하게 나타나고 있으므로 D-리보오스 14% 함유보다는 D-리보오스 10% 함유하는 것이 혈당 저감화 효과 및 비용적인 측면을 고려할 때 기능성 설탕의 비율로 더 적절할 것으로 사료된다.

Purpose: To compare the extent to which three different levels of D-ribose in sugar reduce the glycemic index (GI) and blood glucose response in healthy adults. Methods: Healthy adults (eight male and six female participants, n = 14) fasted for 14~16 h after eating the same dinner. Participants were then randomized to receive glucose, sucrose, sucrose containing 5% D-ribose (RB5), sucrose containing 10% D-ribose (RB10), or sucrose containing 14% D- ribose (RB14) every week on the same day for 10 weeks (repeating the sample twice). Blood samples were collected by finger prick before and 15, 30, 45, 60, 90, and 120 min after starting to eat. Results: We observed a decreased glycemic response to sucrose containing D-ribose. GIs for sucrose, RB5, RB10, and RB14 were 67.39, 67.07, 47.57, and 45.62, respectively. GI values for sucrose and RB5 were similar to those for foods with a medium GI, and GI values for RB10 and RB14 were similar to those for foods with a low GI. The postprandial maximum blood glucose rise (Cmax) with RB14 was the lowest among the test foods. Cmax values for RB10 and RB14 were significantly lower than that for sucrose. Conclusion: The results of this study suggest that sucrose containing D-ribose has an acute suppressive effect on GI and Cmax. In addition, D-ribose active elements in sugar may be effective in preventing blood glucose spikes induced by sucrose intake.

키워드

참고문헌

  1. World Health Organization. Sugars intake for adults and children. Geneva: World Health Organization; 2015.
  2. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet 1999; 354(9179): 617-621. https://doi.org/10.1016/S0140-6736(98)12131-1
  3. Beisswenger P, Heine RJ, Leiter LA, Moses A, Tuomilehto J. Prandial glucose regulation in the glucose triad: emerging evidence and insights. Endocrine 2004; 25(3): 195-202. https://doi.org/10.1385/ENDO:25:3:195
  4. Jenkins DJ, Wolever TM, Collier GR, Ocana A, Rao AV, Buckley G, Lam Y, Mayer A, Thompson LU. Metabolic effects of a lowglycemic-index diet. Am J Clin Nutr 1987; 46(6): 968-975. https://doi.org/10.1093/ajcn/46.6.968
  5. Riccardi G, Rivellese AA, Giacco R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr 2008; 87(1): 269S-274S. https://doi.org/10.1093/ajcn/87.1.269S
  6. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004; 27(2): 538-546. https://doi.org/10.2337/diacare.27.2.538
  7. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB. High glycemic index foods, overeating, and obesity. Pediatrics 1999; 103(3): E26. https://doi.org/10.1542/peds.103.3.e26
  8. Korea Health Industry Development Institute. Sugar database compilation for commonly consumed foods. Cheongju: Ministry of Food and Drug Safety; 2015.
  9. Latulippe ME, Skoog SM. Fructose malabsorption and intolerance: effects of fructose with and without simultaneous glucose ingestion. Crit Rev Food Sci Nutr 2011; 51(7): 583-592. https://doi.org/10.1080/10408398.2011.566646
  10. DeChristopher LR, Uribarri J, Tucker KL. Intake of high fructose corn syrup sweetened soft drinks, fruit drinks and apple juice is associated with prevalent coronary heart disease, in U.S. adults, ages 45-59 y. BMC Nutr 2017; 3(1): 51. https://doi.org/10.1186/s40795-017-0168-9
  11. Ibarra-Reynoso LD, Lopez-Lemus HL, Garay-Sevilla ME, Malacara JM. Effect of restriction of foods with high fructose corn syrup content on metabolic indices and fatty liver in obese children. Obes Facts 2017; 10(4): 332-340. https://doi.org/10.1159/000476069
  12. Kim JH. Spotlight functional sweeteners. Food Ind Nutr 2010; 15(2): 26-28.
  13. Ministry of Food and Drug Safety (KR). Food additive standard [Internet]. Cheongju: Ministry of Food and Drug Safety; [cited 2016 Nov 29]. Available from: http://www.foodsafetykorea.go.kr/portal/safefoodlife/foodAditive/foodAdditiveRvlv.do?page_gubun=1&procs_cl=1&menu_no=306&menu_grp=MENU_GRP01.
  14. Bierman EL, Baker EM, Plough IC, Hall WH. Metabolism of dribose in diabetes mellitus. Diabetes 1959; 8(6): 455-458. https://doi.org/10.2337/diab.8.6.455
  15. Steinberg T, Poucher RL, Sarin RK, Rees RB, Gwinup G. Oral administration of D-ribose in diabetes mellitus. Diabetes 1970; 19(1): 11-16. https://doi.org/10.2337/diab.19.1.11
  16. Han C, Lu Y, Wei Y, Liu Y, He R. D-ribose induces cellular protein glycation and impairs mouse spatial cognition. PLoS One 2011; 6(9): e24623. https://doi.org/10.1371/journal.pone.0024623
  17. Hetenyi G Jr, Ishiwata K. Effect of D-(--)-ribose on the turnover of glucose in dogs. Am J Physiol 1968; 214(6): 1333-1339.
  18. Ishiwata K, Hetenyi G Jr, Vranic M. Effect of D-glucose or Dribose on the turnover of glucose in pancreatectomized dogs maintained on a matched intraportal infusion of insulin. Diabetes 1969; 18(12): 820-827. https://doi.org/10.2337/diab.18.12.820
  19. Ismail ZB, Abu-Baker N, Alzoubi K, Al-Zhgoul M, Al-Essa MK, Khlouf S, Al-Saleh A, Al-Omari B, Abu-Tayeh R, Shomaf M, Battah A, Al-Hadidi K. Evaluation of alpha-D-ribofuranose (Dribose) toxicity after intravenous administration to rabbits. Hum Exp Toxicol 2012; 31(8): 820-829. https://doi.org/10.1177/0960327111432505
  20. Teitelbaum JE, Johnson C, St Cyr J. The use of D-ribose in chronic fatigue syndrome and fibromyalgia: a pilot study. J Altern Complement Med 2006; 12(9): 857-862. https://doi.org/10.1089/acm.2006.12.857
  21. Seifert JG, Subudhi AW, Fu MX, Riska KL, John JC, Shecterle LM, St Cyr JA. The role of ribose on oxidative stress during hypoxic exercise: a pilot study. J Med Food 2009; 12(3): 690-693. https://doi.org/10.1089/jmf.2008.0065
  22. Lee YH, Shin KO, Kim KS, Kim YI, Woo JH. The effects of Dribose supplementation on the production of blood fatigue factors after maximal intensity exercise. J Life Sci 2011; 21(5): 729-733. https://doi.org/10.5352/JLS.2011.21.5.729
  23. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002; 76(1): 5-56. https://doi.org/10.1093/ajcn/76.1.5
  24. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TM. Glycaemic index methodology. Nutr Res Rev 2005; 18(1): 145-171. https://doi.org/10.1079/NRR2005100
  25. Wolever TM, Vorster HH, Bjorck I, Brand-Miller J, Brighenti F, Mann JI, Ramdath DD, Granfeldt Y, Holt S, Perry TL, Venter C, Xiaomei Wu. Determination of the glycaemic index of foods: interlaboratory study. Eur J Clin Nutr 2003; 57(3): 475-482. https://doi.org/10.1038/sj.ejcn.1601551
  26. Nam H, Kyung M, Seo S, Jung S, Chang MJ. Effect of different levels of xylooligosaccharide in sugar on glycemic index and blood glucose response in healthy adults. J Nutr Health 2015; 48(5): 398-406. https://doi.org/10.4163/jnh.2015.48.5.398
  27. Moon SH, Lee KS, Kyung MO, Jung SW, Park YJ, Yang CK. Study on the proper D-xylose concentration in sugar mixture to reduce glycemic index (GI) value in the human clinical model. Korean J Food Nutr 2012; 25(4): 787-792. https://doi.org/10.9799/ksfan.2012.25.4.787
  28. Lee JS, Kim AR, Nam H, Kyung M, Seo S, Chang MJ. Effect of varying levels of xylobiose in sugar on glycemic index and blood glucose response in healthy adults. J Nutr Health 2016; 49(5): 295-303. https://doi.org/10.4163/jnh.2016.49.5.295
  29. Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. Am J Clin Nutr 2002; 76(1): 281S-285S. https://doi.org/10.1093/ajcn/76.1.281S
  30. Hodge AM, English DR, O'Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004; 27(11): 2701-2706. https://doi.org/10.2337/diacare.27.11.2701
  31. Ludwig DS. Dietary glycemic index and obesity. J Nutr 2000; 130(2S Suppl): 280S-283S. https://doi.org/10.1093/jn/130.2.280S
  32. Pliml W, von Arnim T, Stablein A, Hofmann H, Zimmer HG, Erdmann E. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet 1992; 340(8818): 507-510. https://doi.org/10.1016/0140-6736(92)91709-H
  33. Gross M, Zollner N. Serum levels of glucose, insulin, and C-peptide during long-term D-ribose administration in man. Klin Wochenschr 1991; 69(1): 31-36. https://doi.org/10.1007/BF01649054
  34. Tao SU, Rong-Qiao HE. An insight of D-ribose metabolic imbalance in Type 2 diabetes mellitus. Prog Biochem Biophys 2015; 42(4): 390-392.
  35. Bae YJ, Bak YK, Kim B, Kim MS, Lee JH, Sung MK. Coconutderived D-xylose affects postprandial glucose and insulin responses in healthy individuals. Nutr Res Pract 2011; 5(6): 533-539. https://doi.org/10.4162/nrp.2011.5.6.533
  36. Shibanuma K, Degawa Y, Houda K. Determination of the transient period of the EIS complex and investigation of the suppression of blood glucose levels by L-arabinose in healthy adults. Eur J Nutr 2011; 50(6): 447-453. https://doi.org/10.1007/s00394-010-0154-3
  37. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 1996; 45(11): 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
  38. Segal S, Foley J. The metabolism of D-ribose in man. J Clin Invest 1958; 37(5): 719-735. https://doi.org/10.1172/JCI103658
  39. Sahlin K, Broberg S, Ren JM. Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise. Acta Physiol Scand 1989; 136(2): 193-198. https://doi.org/10.1111/j.1748-1716.1989.tb08652.x
  40. Naito Y. Biochemical studies on d-ribose, with special reference to the mechanism of absorption of sugars from intestinal tract. J Biochem 1944; 36(1): 131-161. https://doi.org/10.1093/oxfordjournals.jbchem.a126132
  41. Griffiths JC, Borzelleca JF, St Cyr J. Sub-chronic (13-week) oral toxicity study with D-ribose in Wistar rats. Food Chem Toxicol 2007; 45(1): 144-152. https://doi.org/10.1016/j.fct.2006.08.012
  42. Eijnde BO, Van Leemputte M, Brouns F, Van Der Vusse GJ, Labarque V, Ramaekers M, Van Schuylenberg R, Verbessem P, Wijnen H, Hespel P. No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J Appl Physiol (1985) 2001; 91(5): 2275-2281. https://doi.org/10.1152/jappl.2001.91.5.2275
  43. Yoon JW, Lee SE, Park H. Effect of D-ribose supplementation on run-to-exhaustion time and antioxidative capacity under sea level or high altitude condition. J Exerc Nutr Biochem 2009; 13(1): 45-50.
  44. Shecterle LM, St Cyr JA. Dermal benefits of topical D-ribose. Clin Cosmet Investig Dermatol 2009; 2: 151-152.
  45. Cleveland Clinic Wellness (US). Ribose supplement review [Internet]. Cleveland (OH): Cleveland Clinic Wellness; [cited 2017 Aug 10]. Available from: http://www.clevelandclinicwellness.com/Features/Pages/Ribose.aspx.
  46. Su T, He R. D-ribose, an overlooked player in type 2 diabetes mellitus? Sci China Life Sci 2014; 57(3): 361. https://doi.org/10.1007/s11427-014-4614-5
  47. Seifert J, Frelich A, Shecterle L, St Cyr J. Assessment of hematological and biochemical parameters with extended D-ribose ingestion. J Int Soc Sports Nutr 2008; 5(1): 13. https://doi.org/10.1186/1550-2783-5-13
  48. Ministry of Food and Drug Safety (KO). The first comprehensive plan for the sugar reduction ('16-'20). Cheongju: Ministry of Food and Drug Safety; 2016.