DOI QR코드

DOI QR Code

Radius of Starlikeness for Analytic Functions with Fixed Second Coefficient

  • Ali, Rosihan M. (School of Mathematical Sciences, Universiti Sains Malaysia) ;
  • Kumar, Virendra (Department of Mathematics, Central University of Haryana) ;
  • Ravichandran, V. (Department of Mathematics, University of Delhi) ;
  • Kumar, Shanmugam Sivaprasad (Department of Applied Mathematics, Delhi Technological University)
  • Received : 2015.08.20
  • Accepted : 2016.02.26
  • Published : 2017.10.23

Abstract

Sharp radius constants for certain classes of normalized analytic functions with fixed second coefficient, to be in the classes of starlike functions of positive order, parabolic starlike functions, and Sokół-Stankiewicz starlike functions are obtained. Our results extend several earlier works.

Keywords

References

  1. R. M. Ali and V. Ravichandran, Uniformly convex and uniformly starlike functions, Math. Newsletter, 21(1)(2011), 16-30.
  2. R. M. Ali, N. E. Cho, N. K. Jain and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat, 26(3) (2012), 553-561. https://doi.org/10.2298/FIL1203553A
  3. R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 218(2012), no. 11, 6557-6565. https://doi.org/10.1016/j.amc.2011.12.033
  4. R. M. Ali, N. Jain and V. Ravichandran, On the radius constants for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 36(2) (2013), no. 1, 23-38.
  5. R. M. Ali, S. Nagpal and V. Ravichandran, Second-order differential subordination for analytic functions with fixed initial coefficient, Bull. Malays. Math. Sci. Soc. (2), 34(2011), no. 3, 611-629.
  6. M. Finkelstein, Growth estimates of convex functions, Proc. Amer. Math. Soc., 18(1967), 412-418. https://doi.org/10.1090/S0002-9939-1967-0214749-8
  7. T. H. Gronwall, On the distortion in conformal mapping when the second coefficient in the mapping function has an assigned value, Nat. Acad. Proc., 6(1920), 300-302. https://doi.org/10.1073/pnas.6.6.300
  8. R. M. Goel, The radius of convexity and starlikeness for certain classes of analytic functions with fixed second coefficients, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 25(1971), 33-39(1973).
  9. S. K. Lee, V. Ravichandran and S. Supramaniam, Applications of differential subordination for functions with fixed second coefficient to geometric function theory, Tamsui Oxford J. Math. Sci., 29(2013), no. 2, 267-284.
  10. C. P. McCarty, Two radius of convexity problems, Proc. Amer. Math. Soc., 42(1974), 153-160. https://doi.org/10.1090/S0002-9939-1974-0325949-4
  11. C. P. McCarty, Functions with real part greater than ${\alpha}$, Proc. Amer. Math. Soc., 35(1972), 211-216.
  12. R. Mendiratta and V. Ravichandran, Livingston problem for close-to-convex functions with fixed second coefficient, Jnanabha, 43(2013), 107-122.
  13. R. Mendiratta, S. Nagpal and V. Ravichandran, Second-order differential superordination for analytic functions with fixed initial coefficient, Southeast Asian Bull. Math., 39(2015), no. 6, 851-864 .
  14. R. Mendiratta, S. Nagpal and V. Ravichandran, Radii of starlikeness and convexity for analytic functions with fixed second coefficient satisfying certain coefficient inequalities, Kyungpook Math. J., 55(2015), no. 2, 395-410. https://doi.org/10.5666/KMJ.2015.55.2.395
  15. S. Nagpal and V. Ravichandran, Applications of the theory of differential subordination for functions with fixed initial coefficient to univalent functions, Ann. Polon. Math., 105(2012), no. 3, 225-238. https://doi.org/10.4064/ap105-3-2
  16. Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
  17. S. Owa and H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3(2002), no. 3, Article 42, 13 pp.
  18. K. S. Padmanabhan and M. S. Ganesan, A radius of convexity problem, Bull. Austral. Math. Soc., 28(1983), no. 3, 433-439. https://doi.org/10.1017/S0004972700021146
  19. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196. https://doi.org/10.1090/S0002-9939-1993-1128729-7
  20. T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, in Computational Methods and Function Theory 1994 (Penang), 319-324, Ser. Approx. Decompos., 5 World Sci. Publ., River Edge, NJ.
  21. V. Singh and R. M. Goel, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan, 23(1971), 323-339. https://doi.org/10.2969/jmsj/02320323
  22. J. Soko l and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101-105.
  23. P. D. Tuan and V. V. Anh, Radii of convexity of two classes of regular functions, Bull. Austral. Math. Soc., 21(1980), no. 1, 29-41. https://doi.org/10.1017/S0004972700011278
  24. B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25(1994), no. 3, 225-230.