DOI QR코드

DOI QR Code

On Normal Products of Selfadjoint Operators

  • Received : 2017.07.07
  • Accepted : 2017.08.26
  • Published : 2017.10.23

Abstract

A necessary and sufficient condition for the product AB of a selfadjoint operator A and a bounded selfadjoint operator B to be normal is given. Various properties of the factors of the unitary polar decompositions of A and B are obtained in the case when the product AB is normal. A block operator model for pairs (A, B) of selfadjoint operators such that B is bounded and AB is normal is established. The case when both operators A and B are bounded is discussed. In addition, the example due to Rehder is reexamined from this point of view.

Keywords

Acknowledgement

Supported by : Kyungpook National University, NCN (National Science Center)

References

  1. E. Albrecht, P. G. Spain, When products of self-adjoints are normal, Proc. Amer. Math. Soc., 128(2000), 2509-2511. https://doi.org/10.1090/S0002-9939-00-05830-5
  2. M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, D. Reidel Publishing Co., Dordrecht, 1987.
  3. J. Bognar, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78. Springer-Verlag, New York-Heidelberg, 1974.
  4. S. Dehimi, M. H. Mortad, Right (or left) invertibility of bounded and unbounded operators and applications to the spectrum of products, Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-017-0687-z.
  5. T. Furuta, Invitation to linear operators, Taylor & Francis, Ltd., London, 2001.
  6. K. Gustafson, M. H. Mortad, Conditions implying commutativity of unbounded self-adjoint operators and related topics, J. Operator Theory, 76(2016), 159-169. https://doi.org/10.7900/jot.2015oct16.2076
  7. Z. J. Jab lonski, I. B. Jung, J. Stochel, Unbounded quasinormal operators revisited, Integr. Equ. Oper. Theory, 79(2014), 135-149. https://doi.org/10.1007/s00020-014-2133-1
  8. M. H. Mortad, An application of the Putnam-Fuglede theorem to normal products of selfadjoint operators, Proc. Amer. Math. Soc., 131(2003), 3135-3141. https://doi.org/10.1090/S0002-9939-03-06883-7
  9. M. H. Mortad, On some product of two unbounded self-adjoint operators, Integr. Equ. Oper. Theory, 64(2009), 399-408. https://doi.org/10.1007/s00020-009-1697-7
  10. C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math., 73(1951), 357-362. https://doi.org/10.2307/2372180
  11. W. Rehder, On the Product of Self-adjoint Operators, Internat. J. Math. Math. Sci., 5(1982), 813-816. https://doi.org/10.1155/S0161171282000751