Acknowledgement
Supported by : Kyungpook National University, NCN (National Science Center)
References
- E. Albrecht, P. G. Spain, When products of self-adjoints are normal, Proc. Amer. Math. Soc., 128(2000), 2509-2511. https://doi.org/10.1090/S0002-9939-00-05830-5
- M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, D. Reidel Publishing Co., Dordrecht, 1987.
- J. Bognar, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78. Springer-Verlag, New York-Heidelberg, 1974.
- S. Dehimi, M. H. Mortad, Right (or left) invertibility of bounded and unbounded operators and applications to the spectrum of products, Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-017-0687-z.
- T. Furuta, Invitation to linear operators, Taylor & Francis, Ltd., London, 2001.
- K. Gustafson, M. H. Mortad, Conditions implying commutativity of unbounded self-adjoint operators and related topics, J. Operator Theory, 76(2016), 159-169. https://doi.org/10.7900/jot.2015oct16.2076
- Z. J. Jab lonski, I. B. Jung, J. Stochel, Unbounded quasinormal operators revisited, Integr. Equ. Oper. Theory, 79(2014), 135-149. https://doi.org/10.1007/s00020-014-2133-1
- M. H. Mortad, An application of the Putnam-Fuglede theorem to normal products of selfadjoint operators, Proc. Amer. Math. Soc., 131(2003), 3135-3141. https://doi.org/10.1090/S0002-9939-03-06883-7
- M. H. Mortad, On some product of two unbounded self-adjoint operators, Integr. Equ. Oper. Theory, 64(2009), 399-408. https://doi.org/10.1007/s00020-009-1697-7
- C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math., 73(1951), 357-362. https://doi.org/10.2307/2372180
- W. Rehder, On the Product of Self-adjoint Operators, Internat. J. Math. Math. Sci., 5(1982), 813-816. https://doi.org/10.1155/S0161171282000751