References
- Armonies W, Reise K. 2003. Empty habitat in coastal sediments for populations of macrozoobenthos. Helgoland Mar Research. 56(4): 279-287. https://doi.org/10.1007/s10152-002-0129-8
- Clark LA, Pregibon D. 1992. Tree-based models, In: J. M. Chambers and T. J. Hastie, eds., Statistical Models in S, California, Wadsworth & Brooks/Cole Advanced Books & Software. Pacific Grove: p. 377-419.
- Berry PM, Dawson TP, Harrison PA, Pearson R, Butt N. 2003. The sensitivity and vulnerability of terrestrial habitats and species in Britain and Ireland to climate change. Journal of Nature Conservation. 11(1): 15-23. https://doi.org/10.1078/1617-1381-00030
- Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and regression trees. Chapman & Hall/CRC, Boca Raton, FL, US, pp 358.
- Hanley J, McNeil B. 1982. The meaning and use of the area under areceiver operating characteristic (ROC) curve. Radiology. 143(1): 29-36. https://doi.org/10.1148/radiology.143.1.7063747
- Huntley B, Berry PM, Cramer W, McDonald AP. 1995. Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography. 22(6): 967-1001. https://doi.org/10.2307/2845830
- Horikawa M, Tsuyama I, Matsui T, Kominami Y, Tanaka N. 2009. Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landscape Ecology. 24(1): 115-128. https://doi.org/10.1007/s10980-008-9289-5
- IPCC 2014. Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University.
- Iverson LR, Prasad AM. 1998. Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs. 68(4): 465-485. https://doi.org/10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2
- Kira T. 1977. A Climatological interpretation of Japanese vegetation zones. In Miyawaki, A. and Tuxen, R. (eds.) Vegetation science and environmental protection. Maruzen, Tokyo: p. 21-30.
- Kumar P. 2012. Assessment of impact of climate change on Rondodendrons in Sikkim Himalayas using Maxent moddelling: limitations and changes. Biodiversity and Conservation. 21(5): 1251-1266. https://doi.org/10.1007/s10531-012-0279-1
- Matsui T, Yagihashi T, Nakaya T, Tanaka N, Taoda H. 2004a. Climatic controls on distribution of Fagus crenata forests in Japan. Journal of Vegetation Science. 15(1): 57-66. https://doi.org/10.1111/j.1654-1103.2004.tb02237.x
- Matsui T, Yagihashi T, Nakaya T, Taoda H, Yoshinaga S, Daimaru H, Tanaka N. 2004b. Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. Journal of Vegetation Science. 15(5): 605-614. https://doi.org/10.1111/j.1654-1103.2004.tb02302.x
- Metz CE. 1978. Basic principles of ROC Analysis, Seminars in Nuclear Medicine. 8(4): 283-298.
- Nakao K, Matsui T, Tanaka N. Hukusima T. 2009. Climatic controls of the distribution and abundance of two evergreen Quercus species in Japan. Japanese Journal of Forest Environment. 51(1): 27-37. [Japanese Literature]
- Nakao K, Matsui T, Horikawa M, Tsuyama I, Tanaka N. 2011. Assessing the impact of land use and climate change on the evergreen broad-leaved species of Quercus acuta in Japan. Plant Ecology. 212(2): 229-243. https://doi.org/10.1007/s11258-010-9817-7
- Nakao K, Higa M, Tsuyama I, Lin CT, Sun ST, Lin JR, Chiou CR, Chen TY, Matsui T. Tanaka N. 2014. Changes in the potential habitats of 10 dominant evergreen broadleaved tree species in the Taiwan-Japan archipelago. Plant Ecology. 215(6): 639-650. https://doi.org/10.1007/s11258-014-0329-8
- Normand S, Svenning JC, Skov F. 2007. National and European perspectives on climate change sensitivity of the habitats directive characteristic plant species. Journal for Nature Conservation. 15(1): 41-53. https://doi.org/10.1016/j.jnc.2006.09.001
- Ohsawa M. 1990. An interpretation in latitudinal patterns of limits in south and east Asian mountains. Journal of Ecology. 78(2): 326-339. https://doi.org/10.2307/2261115
- Ohsawa M. 1991. Structural comparison of tropical mountain rain-forest along latitudinal and altitudinal gradients in south and east-Asia. Vegetatio. 97: 1-10.
- Ohsawa M. 1993. Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. Journal of Vegetation Science. 4(1): 13-18. https://doi.org/10.2307/3235728
- Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 421: 37-42. https://doi.org/10.1038/nature01286
- R Development Core Team. 2011. R: A language and environment for statistical computing, R. Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0, URL://www.R-project.org.
- Swets KA. 1988. Measuring the accuracy of diagnostic systems. Science. 240(4857): 1285-1293. https://doi.org/10.1126/science.3287615
- Tanaka N. 2007. PRDB (Phytosociological Releve Data Base), Environment change impact team. Forestry and Forest Products Research Institute.
- Tanaka N, Nakazono E, Tsuyama I, Matsui T. 2009. Assessing impact of climate warming on potential habitats of ten conifer species in Japan. Global Environmental Research. 14(2): 153-164.
- Thuiller W. 2003. BIOMOD-optimizing predictions of species distributions and projecting potential shifts under global change. Global Change Biology. 9(10): 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
- Thuiller W. Lavorel S, Araujo MB, Sykes MT, Prentice IC. 2005. Climate Change threats to plant diversity in Europe. Proceeding of the National Academy of Sciences of the United States of America. 102(23): 8245-8250. https://doi.org/10.1073/pnas.0409902102
- Tsuyama I, Matsui T, Ogawa M, Kominami Y, Tanaka N. 2008. Habitat prediction and impact assessment of climate change on Sasa kurilensis in eastern Honshu, Japan. Theory and Applications of GIS. 16(1): 11-25. [Japanese Literature]
- Tsuyama I, Nakao K, Matsui T, Higa M, Horikawa M, Kominami Y, Tanaka N. 2011. Climatic controls of a keystone understory species, Sasamorpha borealis, and an impact assessment of climate change in Japan. Annals of Forest Science. 68(4): 689-699. https://doi.org/10.1007/s13595-011-0086-y
- Uyeki H. 1941. On the northern limit of evergreen broad-leaved tree in Korea Acta. Phytotax. Geobot. 10(2): 89-93. [Japanese Literature]
- Yun JH, Kim JH, Oh KH, Lee BY. 2011a. Distributional Change and Climate Condition of Warm-temperate Evergreen Broad-leaved Trees in Korea. Korean Journal of Environment and Ecology. 25(1): 47-56. [Korean Literature]
- Yun JH, Nakao K, Park CH, Lee BY. 2011b. Potential Habitats and Change Prediction of Machilus thunbergii Siebold & Zucc in Korea by Climate Change. Korean Journal of Environment and Ecology. 25(6): 903-910. [Korean Literature]
- Yun JH, Nakao K, Kim JH, Kim SY, Park CH, Lee BY. 2014a. Habitat prediction and impact assessment of Neolitsea sericea (Blume) Koidz. under Climate Change in Assessment. 23(2): 101-111. [Korean Literature]
- Yun JH, Nakao K, Tsuyama I, Higa M, Matsui T, Park CH, Lee BY, Tanaka N. 2014b. Does future climate change facilitate expansion of evergreen broad-leaved tree species in the human-disturbed landscape of the Korean Peninsula? Implication for monitoring design of the impact assessment. Japanese Forest Society. 19(1): 174-183.
- Zweig MH, Campbell G. 1993. Receiver-operating characteristic (ROC) Plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry. 39(4): 561-577.