DOI QR코드

DOI QR Code

THE EXTREMAL PROBLEM ON HUA DOMAIN

  • Long, Sujuan (Department of Mathematics Minjiang University)
  • Received : 2016.09.01
  • Accepted : 2017.08.04
  • Published : 2017.11.01

Abstract

In this paper, we study the $Carath{\acute{e}}odory$ extremal problems on the Hua domain of the first three types. We give the explicit formula for the $Carath{\acute{e}}odory$ extremal problems between the first three types of Hua domain and the unit ball, which improves the works done on Hua domain and Cartan-egg domain and super-Cartan domain.

Keywords

References

  1. C. Caratheodory, Uber die Abbildungen, die durch Systeme von analytischen Funktionen von mehreren Veranderlichen erzeugt werden, Math. Z. 34 (1932), no. 1, 758-792. https://doi.org/10.1007/BF01180619
  2. Y. Kubota, An extremal problem on the classical Cartan domains, Kodai Math. J. 4 (1981), no. 2, 278-287. https://doi.org/10.2996/kmj/1138036374
  3. Y. Kubota, An extremal problem on the classical Cartan domains. II, Kodai Math. J. 5 (1982), no. 2, 218-224. https://doi.org/10.2996/kmj/1138036550
  4. Y. Kubota, An extremal problem on the classical Cartan domains. III, Kodai Math. J. 5 (1982), no. 3, 402-407. https://doi.org/10.2996/kmj/1138036607
  5. Y. Kubota, An extremal problem on bounded symmetric domains, Bull. London Math. Soc. 15 (1983), no. 2, 126-130. https://doi.org/10.1112/blms/15.2.126
  6. H. T. Li, Y. Y. Wang, and J. B. Su, Extremal problem on the second type of Cartan-egg domain, Adv. Math. 42 (2013), no. 2, 243-255.
  7. Q. K. Lu, The Classical Manifolds and Classical Domains, Shanghai Scienti Technical Publishers, 1963.
  8. D.-W. Ma, Boundary behavior of invariant metrics and volume forms on strongly pseudoconvex domains, Duke Math. J. 63 (1991), no. 3, 673-697. https://doi.org/10.1215/S0012-7094-91-06328-3
  9. D.-W. Ma, Caratheodory extremal maps of ellipsoids, J. Math. Soc. Japan 49 (1997), no. 4, 723-739. https://doi.org/10.2969/jmsj/04940723
  10. J. D. Park, A new algorithmic method for finding the Caratheodory extremal maps, J. Math. Anal. Appl. 349 (2009), no. 2, 475-483. https://doi.org/10.1016/j.jmaa.2008.09.002
  11. J. B. Su, A note on extremal problems on Cartan domains, J. Henan Univ. (Natural Sci.) 36 (2006), DOI: 10.3969/j.issn.1003-4978.2006.04.001.
  12. J. B. Su and H. T. Li, The Extremal problem on Cartan-egg domain of the first type, Chin. Quart. J. Math. 26 (2011), 343-349.
  13. J. B. Su and W. P. Yin, Extremal problems on the Hua domain of the first type, Sci. China Ser. A Math. 48 (2005), suppl., 343-354.
  14. G. Travaglini, An analogue of the Schwarz lemma for bounded symmetric domains, Proc. Amer. Math. Soc. J. 83 (1983), no. 1, 85-88.
  15. A. Wang, X. Zhao, and Z. Y. Liu, Extremal problems on the Cartan-Hartogs domains, J. Korean Math. Soc. 44 (2007), no. 6, 1291-1312. https://doi.org/10.4134/JKMS.2007.44.6.1291
  16. W. P. Yin, The Bergman kernels on Cartan-Hartogs domains, Chinese Sci. Bull. 44 (1999), no. 21, 1947-1951. https://doi.org/10.1007/BF02887114
  17. W. P. Yin, The Bergman kernels on CartanEgg domain of the first type, Northeast. Math. J. 17 (2001), no. 2, 210-220.
  18. W. P. Yin, The Bergman kernel functions on four types of Cartan-egg domains, Adv. Math. (China) 30 (2001), no. 6, 533-542.
  19. W. P. Yin and J. B. Su, Extremal problems on super-Cartan domain of the first type, Complex Var. Theory Appl. 48 (2003), no. 5, 441-452.