DOI QR코드

DOI QR Code

The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell

인산 도핑 PBI계 막전극접합체를 적용한 고온형 수소연료전지의 전기화학적 내구성 연구

  • RHEE, JUNKI (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • LEE, CHANMIN (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • JEON, YUKWON (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • LEE, HONG YEON (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • PARK, SANG SUN (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • KIM, TAE YOUNG (Energy & Environment Lab., Samsung Advanced Institute of Technology) ;
  • KIM, HEESEON (Department of Mechanical Engineering, Yonsei University) ;
  • SONG, SOONHO (Department of Mechanical Engineering, Yonsei University) ;
  • PARK, JUNG OCK (Energy & Environment Lab., Samsung Advanced Institute of Technology) ;
  • SHUL, YONG-GUN (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 이준기 (연세대학교 화공생명공학과) ;
  • 이찬민 (연세대학교 화공생명공학과) ;
  • 전유권 (연세대학교 화공생명공학과) ;
  • 이홍연 (연세대학교 화공생명공학과) ;
  • 박상선 (연세대학교 화공생명공학과) ;
  • 김태영 (삼성종합기술원) ;
  • 김희선 (연세대학교 기계공학과) ;
  • 송순호 (연세대학교 기계공학과) ;
  • 박정옥 (삼성종합기술원) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Received : 2017.07.25
  • Accepted : 2017.10.30
  • Published : 2017.10.30

Abstract

A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.

Keywords

References

  1. E. K. Cho, J. S. Park, S. S. Sekhon, G. G. Park, T. H. Yang, W. Y. Lee, and C. S. Kim, "A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells", J. Electrochem. Soc, Vol. 156, 2009, pp. B197-B202. https://doi.org/10.1149/1.3031406
  2. J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z. S. Liu, and S. Holdcroft, "High temperature PEM fuel cells", J. Power Sources, Vol. 160, 2006, pp. 872-891. https://doi.org/10.1016/j.jpowsour.2006.05.034
  3. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells", J. Power Sources, Vol. 103, 2001, pp. 1-9. https://doi.org/10.1016/S0378-7753(01)00812-6
  4. J. T. Wang, R. F. Savinell, J. Wainright, M. Litt, and H. Yu, "A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte", Electrochim. Acta, Vol. 41, 1996, pp. 193-197. https://doi.org/10.1016/0013-4686(95)00313-4
  5. C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand, and A. B. Jensen, "Integration of high temperature PEM fuel cells with a methanol reformer", J. Power Sources, Vol. 145, 2005, pp. 392-398. https://doi.org/10.1016/j.jpowsour.2005.02.056
  6. N. H. Jalani, M. Ramani, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R. Staudt, and R. Datta, "Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells", J. Power Sources, Vol. 160, 2006, pp. 1096-1103. https://doi.org/10.1016/j.jpowsour.2006.02.094
  7. P. Krishnan, J. S. Park, and C. S. Kim, "Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide", J. Power Sources, Vol. 159, 2006, pp. 817-823. https://doi.org/10.1016/j.jpowsour.2005.11.071
  8. J. A. Asensio, S. Borros, and P. Gomez-Romero, "Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes", J. Electrochem. Soc, Vol. 151, 2004, pp. A304-A310. https://doi.org/10.1149/1.1640628
  9. D. Aili, L. N. Cleemann, Q. Li, J. O. Jensen, E. Christensen, and N. J. Bjerrum, "Thermal curing of PBI membranes for high temperature PEM fuel cells", J. Mater. Chem, Vol. 22, 2012, pp. 5444-5453. https://doi.org/10.1039/c2jm14774b
  10. S. Yu, L. Xiao, and B. C. Benicewicz, "Durability Studies of PBI-based High Temperature PEMFCs", Fuel Cells, Vol. 8, 2008, pp. 165-174. https://doi.org/10.1002/fuce.200800024
  11. V. Kurdakova, E. Quartarone, P. Mustarelli, A. Magistris, E. Caponetti, and M. L. Saladino, "PBI-based composite membranes for polymer fuel cells", J. Power Sources, Vol. 23, 2010, pp. 7765-7769.
  12. R. Devanathan, "Recent developments in proton exchange membranes for fuel cells", Energy Environ. Sci, Vol. 1, 2008, pp. 101-109. https://doi.org/10.1039/b808149m
  13. Y. Oono, A. Sounai, and M. Hori, "Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells", J. Power Sources, Vol. 1, 2009, pp. 943-949.
  14. J. Hu, H. Zhang, Y. Zhai, G. Liu, J. Hu, and B. Yi, "Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis", Electrochim. Acta, Vol. 52, 2006, pp. 394-401. https://doi.org/10.1016/j.electacta.2006.05.020
  15. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Progress in Polymer Science, Vol. 34, 2009, pp. 449-477. https://doi.org/10.1016/j.progpolymsci.2008.12.003
  16. Y. Zhai, H. Zhang, G. Liu, J. Hu, and B. Yi, "Degradation Study on MEA in $H_3PO_4$/PBI High-Temperature PEMFC Life Test", J. Electrochem. Soc, Vol. 154, 2007, pp. B72-B76. https://doi.org/10.1149/1.2372687
  17. Y. Zhai, H. Zhang, Y. Zhang, and D. Xing, "A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells", J. Power Sources, Vol. 169, 2007, pp. 259-264. https://doi.org/10.1016/j.jpowsour.2007.03.004
  18. K. Kwon, T. Y. Kim, D. Y. Yoo, S. G. Hong, and J. O. Park, "Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid", J. Power Sources, Vol. 188, 2009, pp. 463-467. https://doi.org/10.1016/j.jpowsour.2008.11.104
  19. F. Seland, T. Berning, B. Borresen, and R. Tunold, "Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte", J. Power Sources, Vol. 160, 2006, pp. 27-38. https://doi.org/10.1016/j.jpowsour.2006.01.047
  20. Y. Zhai, H. Zhang, D. Xing, and Z. G. Shao, "The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test", J. Power Sources, Vol. 164, 2007, pp. 126-133. https://doi.org/10.1016/j.jpowsour.2006.09.069
  21. H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs", Appl. Catal. B, Vol. 56, 2005, pp. 9-35. https://doi.org/10.1016/j.apcatb.2004.06.021
  22. A. Kuver, I. Vogel, and W. Vielstich, "Distinct performance evaluation of a direct methanol SPE fuel cell. A new method using a dynamic hydrogen", J. Power Sources, Vol. 52, 1994, p. 77. https://doi.org/10.1016/0378-7753(94)01943-6
  23. J. Zhang, G. P. Yin, Z. B. Wang, Q. Z. Lai, and K. D. Cai, "Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells", J. Power Sources, Vol. 165, 2007, pp. 73-81. https://doi.org/10.1016/j.jpowsour.2006.12.039
  24. C. Song and P. G. Pickup, "Effect of Hot Pressing on the Performance of Direct Methanol Fuel Cells", J. Appl. Electrochem, Vol. 34, 2004, pp. 1065-1070. https://doi.org/10.1023/B:JACH.0000042673.70388.e1
  25. H. Y. Tang, A. D. Santamaria, J. Bachman, and J. W. Park, "Vacuum-assisted drying of polymer electrolyte membrane fuel cell", Applied Energy, Vol. 107, 2013, pp. 264-270. https://doi.org/10.1016/j.apenergy.2013.01.053
  26. C. Ratti, X. D. Chen, and A. S. Mujumdar, "Drying Technologies in Food Processing", Wiley -Blackwell, 2008.