DOI QR코드

DOI QR Code

Differentiation in Nitrogen-Converting Activity and Microbial Community Structure between Granular Size Fractions in a Continuous Autotrophic Nitrogen Removal Reactor

  • Qian, Feiyue (College of Environmental Science and Engineering, Suzhou University of Science and Technology) ;
  • Chen, Xi (College of Environmental Science and Engineering, Suzhou University of Science and Technology) ;
  • Wang, Jianfang (College of Environmental Science and Engineering, Suzhou University of Science and Technology) ;
  • Shen, Yaoliang (College of Environmental Science and Engineering, Suzhou University of Science and Technology) ;
  • Gao, Junjun (College of Environmental Science and Engineering, Suzhou University of Science and Technology) ;
  • Mei, Juan (College of Environmental Science and Engineering, Suzhou University of Science and Technology)
  • 투고 : 2017.05.16
  • 심사 : 2017.08.01
  • 발행 : 2017.10.28

초록

The differentiations in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous completely autotrophic nitrogen removal over nitrite (CANON) reactor, having a superior specific nitrogen removal rate of $0.24g/(g\;VSS{\cdot}h)$, were investigated by batch tests and high-throughput pyrosequencing analysis, respectively. Results revealed that a high dissolved oxygen concentration (>1.8 mg/l) could result in efficient nitrite accumulation with small granules (0.2-0.6 mm in diameter), because aerobic ammonium-oxidizing bacteria (genus Nitrosomonas) predominated therein. Meanwhile, intermediate size granules (1.4-2.0 mm in diameter) showed the highest nitrogen removal activity of $40.4mg/(g\;VSS{\cdot}h)$ under sufficient oxygen supply, corresponding to the relative abundance ratio of aerobic to anaerobic ammonium-oxidizing bacteria (genus Candidatus Kuenenia) of 5.7. Additionally, a dual substrate competition for oxygen and nitrite would be considered as the main mechanism for repression of nitrite-oxidizing bacteria, and the few Nitrospira spp. did not remarkably affect the overall performance of the reactor. Because all the granular size fractions could accomplish the CANON process independently under oxygen limiting conditions, maintaining a diversity of granular size would facilitate the stability of the suspended growth CANON system.

키워드

참고문헌

  1. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. 2014. Full-scale partial nitritation/anammox experiences - an application survey. Water Res. 55: 292-303. https://doi.org/10.1016/j.watres.2014.02.032
  2. Morales N, Val del Rio A, Vazquez-Padin JR, Mendez R, Mosquera-Corral A, Campos JL. 2015. Integration of the anammox process to the rejection water and main stream lines of WWTPs. Chemosphere 140: 99-105. https://doi.org/10.1016/j.chemosphere.2015.03.058
  3. Shi YJ, Wells G, Morgenroth E. 2016. Microbial activity balance in size fractionated suspended growth biomass from full-scale sidestream combined nitritation-anammox reactors. Bioresour. Technol. 218: 38-45. https://doi.org/10.1016/j.biortech.2016.06.041
  4. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Biochem. Biotechnol. 50: 589-596.
  5. Sinha B, Annachhatre AP. 2006. Partial nitrification - operational parameters and microorganisms involved. Rev. Environ. Sci. Biotechnol. 6: 285-313.
  6. Third KA, Sliekers AO, Kuenen JG, Jetten MS. 2001. The CANON system (Completely Autotrophic Nitrogen-removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24: 588-596. https://doi.org/10.1078/0723-2020-00077
  7. Wang L, Zheng P, Chen TT, Chen JW, Xing YJ, Ji QX, et al. 2012. Performance of autotrophic nitrogen removal in the granular sludge bed reactor. Bioresour. Technol. 123: 78-85. https://doi.org/10.1016/j.biortech.2012.07.112
  8. Varas R, Guzman-Fierro V, Giustinianovich E, Behar J, Fernandez K, Roeckel M. 2015. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor. Bioresour. Technol. 190: 345-351. https://doi.org/10.1016/j.biortech.2015.04.086
  9. Vazquez-Padin J, Mosquera-Corral A, Campos JL, Mendez R, Revsbech NP. 2010. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Res. 44: 4359-4370. https://doi.org/10.1016/j.watres.2010.05.041
  10. Vlaeminck SE, Terada A, Smets BF, De Clippeleir H, Schaubroeck T, Bolca S, et al. 2010. Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Appl. Environ. Microbiol. 76: 900-909. https://doi.org/10.1128/AEM.02337-09
  11. Volcke EI, Picioreanu C, De Baets B, van Loosdrecht MCM. 2012. The granule size distribution in an anammox-based granular sludge reactor affects the conversion - implications for modeling. Biotechnol. Bioeng. 109: 1629-1636. https://doi.org/10.1002/bit.24443
  12. Lotti T, Kleerebezem R, Hu Z, Kartal B, Jetten MS, van Loosdrecht MCM. 2014. Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Res. 66: 111-121. https://doi.org/10.1016/j.watres.2014.07.047
  13. Guo JH, P eng YZ, F an L , Zhang L, N i BJ, Kartal B , et al. 2016. Metagenomic analysis of anammox communities in three different microbial aggregates. Environ. Microbiol. 18: 2979-2993. https://doi.org/10.1111/1462-2920.13132
  14. Perez J, Lotti T, Kleerebezem R, Picioreanu C, van Loosdrecht MCM. 2014. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study. Water Res. 66: 208-218. https://doi.org/10.1016/j.watres.2014.08.028
  15. Wang L, Zheng P, Xing YJ, Li W, Yang J, Abbas G, et al. 2014. Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms. Bioresour. Technol. 157: 240-246. https://doi.org/10.1016/j.biortech.2014.01.116
  16. Qian FY, Wang JF, Shen YL, Wang Y, Wang SY, Chen X. 2017. Achieving high performance completely autotrophic nitrogen removal in a continuous granular sludge reactor. Biochem. Eng. J. 118: 97-104. https://doi.org/10.1016/j.bej.2016.11.017
  17. APHA. 1998. Standard Methods for Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC, USA.
  18. Adav SS, Lee DJ. 2008. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J. Hazard. Mater. 154: 1120-1126. https://doi.org/10.1016/j.jhazmat.2007.11.058
  19. Bassin JP, Kleerebezem R, Dezotti M, van Loosdrecht MCM. 2012. Measuring biomass specific ammonium, nitrite and phosphate uptake rates in aerobic granular sludge. Chemosphere 89: 1161-1168. https://doi.org/10.1016/j.chemosphere.2012.07.050
  20. Wang JF , Qian F Y, L iu XP, L iu W R, W ang SY, Shen Y L. 2016. Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules. Appl. Microbiol. Biotechnol. 100: 9381-9391. https://doi.org/10.1007/s00253-016-7797-9
  21. Ohene-Adjei S, Teather RM, Ivan M, Forster RJ. 2007. Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl. Environ. Microbiol. 73: 4609-4618. https://doi.org/10.1128/AEM.02687-06
  22. Stahl DA, de la Torre JR. 2012. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66: 83-101. https://doi.org/10.1146/annurev-micro-092611-150128
  23. Vlaeminck SE, Terada A, Smets BF, van der Linden D, Boon N, Verstraete W, et al. 2009. Nitrogen removal from digested black water by one-stage partial nitritation and anammox. Environ. Sci. Technol. 43: 5035-5041. https://doi.org/10.1021/es803284y
  24. Lv YT, Wang L, Sun T, Wang XD, Yang YZ, Wang ZY. 2010. Autotrophic nitrogen removal discovered in suspended nitritation system. Chemosphere 79: 180-185. https://doi.org/10.1016/j.chemosphere.2010.02.007
  25. Winkler MK, Kleerebezem R, Kuenen JG, Yang J, van Loosdrecht MCM. 2011. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures. Environ. Sci. Technol. 45: 7330-7337. https://doi.org/10.1021/es201388t
  26. Verawaty M, Pijuan M, Yuan Z, Bond PL. 2012. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Res. 46: 761-771. https://doi.org/10.1016/j.watres.2011.11.054
  27. Li XJ, Sun S, Badgley BD, Sung S, Zhang H, He Z. 2016. Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor. Water Res. 94: 23-31. https://doi.org/10.1016/j.watres.2016.02.031
  28. Li W, Zheng P, Ji JY, Zhang M, Guo J, Zhang JQ, et al. 2014. Floatation of granular sludge and its mechanism: a key approach for high-rate denitrifying reactor. Bioresour. Technol. 152: 414-419. https://doi.org/10.1016/j.biortech.2013.11.056
  29. Hubaux N, Wells G, Morgenroth E. 2015. Impact of coexistence of flocs and biofilm on performance of combined nitritationanammox granular sludge reactors. Water Res. 68: 127-139. https://doi.org/10.1016/j.watres.2014.09.036
  30. Cho S, Fujii N, Lee T, Okabe S. 2011. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresour. Technol. 102: 652-659. https://doi.org/10.1016/j.biortech.2010.08.031
  31. Bartroli A, Perez J, Carrera J. 2010. Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions. Environ. Sci. Technol. 44: 8930-8935. https://doi.org/10.1021/es1019405
  32. Tang CJ, Zheng P, Wang CH, Mahmood Q, Zhang JQ, Chen XG, et al. 2011. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res. 45: 135-144. https://doi.org/10.1016/j.watres.2010.08.018
  33. Oshiki M, Satoh H, Okabe S. 2016. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ. Microbiol. 18: 2784-2796. https://doi.org/10.1111/1462-2920.13134
  34. Ma B, Bao P, Wei Y, Zhu GB, Yuan ZG, Peng YZ. 2015. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci. Rep. 5: 13048-13057. https://doi.org/10.1038/srep13048
  35. Wett B, Omari A, Podmirseg SM, Han M, Akinayo O, Gomez Brandon M, et al. 2013. Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Sci. Technol. 68: 283-289. https://doi.org/10.2166/wst.2013.150
  36. Regmi P, Mark WM, Holgate B, Bunce R, Park H, Chandran K, et al. 2014. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 57: 162-171. https://doi.org/10.1016/j.watres.2014.03.035
  37. Nowka B, Daims H, Spieck E. 2015. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81: 745-753. https://doi.org/10.1128/AEM.02734-14
  38. Zhang L, Liu MM, Zhang SJ, Yang YD, Peng YZ. 2015. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge. Chemosphere 140: 114-118. https://doi.org/10.1016/j.chemosphere.2015.02.001
  39. Han M, Vlaeminck SE, Al-Omari A, Wett B, Bott C, Murthy S, et al. 2016. Uncoupling the solids retention times of flocs and granules in mainstream deammonification: a screen as effective out-selection tool for nitrite oxidizing bacteria. Bioresour. Technol. 221: 195-204. https://doi.org/10.1016/j.biortech.2016.08.115

피인용 문헌

  1. Single-stage autotrophic nitrogen removal process at high loading rate: granular reactor performance, kinetics, and microbial characterization vol.102, pp.5, 2017, https://doi.org/10.1007/s00253-018-8768-0
  2. Adding an anaerobic step can rapidly inhibit sludge bulking in SBR reactor vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-47304-3
  3. Impacts of nanoscale zero-valent iron on nitrite accumulation performance of nitritation granular sludges with different spatial morphologies and its biosorption behavior vol.46, pp.1, 2017, https://doi.org/10.1007/s11164-019-03989-9
  4. Larger Anammox Granules not only Harbor Higher Species Diversity but also Support More Functional Diversity vol.54, pp.22, 2017, https://doi.org/10.1021/acs.est.0c02609
  5. The prediction of partial-nitrification-anammox performance in real industrial wastewater based on granular size vol.286, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.112255
  6. The in situ catalytic oxidation of sulfamethoxazole via peroxydisufate activation operated in a NG/rGO/CNTs composite membrane filtration vol.28, pp.21, 2017, https://doi.org/10.1007/s11356-021-12545-1
  7. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology vol.774, pp.None, 2017, https://doi.org/10.1016/j.scitotenv.2021.145136