References
- Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A.M. (2008), "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. D., 37(1), 21-42. https://doi.org/10.1002/eqe.743
- Astrom, K.J., Hagander, P. and Sternby, J. (1984), "Zeros of sampled systems", Automatica, 20(1), 31-38. https://doi.org/10.1016/0005-1098(84)90062-1
- Butterworth, J.A., Pao, L.Y. and Abramovitch, D.Y. (2008), "The effect of nonminimum-phase zero locations on the performance of feedforward model-inverse control techniques in discrete-time systems", Proceedings of the 2008 American Control Conference, Westin Seatle Hotel, Seatle, Washington, USA.
- Carrion, J.E. and Spencer, Jr., B.F. (2007), "Model-based strategies for real-time hybrid testing", NSEL-006, University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, USA.
- Carrion, J.E., Spencer, Jr., B.F. and Phillips, B.M. (2009), "Realtime hybrid simulation for structural control performance assessment", Earthq. Eng. Eng. Vib.. 8(4), 481-492. https://doi.org/10.1007/s11803-009-9122-4
- Chae, Y., Kazemibidokhti, K. and Ricles, J.M. (2013), "Adaptive time series compensator for delay compensation of servohydraulic actuator systems for real-time hybrid simulation", Earthq. Eng. Struct. D., 42(11), 1697-1715. https://doi.org/10.1002/eqe.2294
- Chen, C. (2007), "Development and numerical simulation of hybrid effective force testing method", Ph.D. Dissertation, Lehigh University, Bethlehem, PA.
- Chen, C. and Ricles, J.M. (2009a), "Analysis of actuator delay compensation methods for real-time testing", Eng. Struct., 31(11), 2643-2655. https://doi.org/10.1016/j.engstruct.2009.06.012
- Chen, C. and Ricles, J.M. (2009b), "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme", Earthq. Eng. Struct. D., 38(10), 1237-1255. https://doi.org/10.1002/eqe.904
- Chen, C. and Ricles, J.M. (2010), "Tracking error-based servohydraulic actuator adaptive compensation for real-time hybrid simulation", J. Struct. Eng. - ASCE, 136(4), 432-440. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000124
- Chonhenchob, V., Singh, S.P., Singh, J.J., Stallings, J. and Grewal, G. (2012), "Measurement and analysis of vehicle vibration for delivering packages in small-sized and mediumsized trucks and automobiles", Packaging Technol. Sci., 25(1), 31-38. https://doi.org/10.1002/pts.955
- Darby, A.P., Blakeborough, A. and Williams, M.S. (1999), "Realtime substructure tests using hydraulic actuator", J. Eng. Mech., 125(10), 1133-1139. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1133)
- Darby, A.P., Blakeborough, A. and Williams, M.S. (2001), "Improved control algorithm for real-time substructure testing", Earthq. Eng. Struct. D., 30(3), 431-448. https://doi.org/10.1002/eqe.18
- Darby, A.P., Williams, M.S. and Blakeborough, A. (2002), "Stability and delay compensation for real-time substructure testing", J. Eng. Mech., 128(12), 1276-1284. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1276)
- Dyke, S.J., Spencer, Jr., B.F. Quast, P. and Sain, M.K. (1995), "Role of control-structure interaction in protective system design", J. Eng. Mech., 121(2), 322-338. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(322)
- Fu, Y. and Dumont, G.A. (1989), "Choice of sampling to ensure minimum-phase behaviour", IEEE T. Autom. Contr., 34(5), 560-563. https://doi.org/10.1109/9.24216
- Gao, X., Castaneda, N. and Dyke, S.J. (2013), "Real time hybrid simulation: from dynamic system, motion control to experimental error", Earthq. Eng. Struct. D., 42(6), 815-832. https://doi.org/10.1002/eqe.2246
- Gillespie, T.D. and Sayers, M. (1981), "Role of road roughness in vehicle ride", Proceedings of the 60th Annual Meeting of the Transportation Research Board, Washington District of Columbia, United States.
- Gomez, D., Dyke, S.J. and Maghareh, A. (2015), "Enabling role of hybrid simulation across NEES in advancing earthquake engineering", Smart Struct. Syst., 15(3), 913-929. https://doi.org/10.12989/sss.2015.15.3.913
- Goodwin, G.C., Graebe, S.F. and Salgado, M.E. (2001), Control System Design, Prentice Hall.
- Gross, E., Tomizuka, M. and Messner, W. (1994), "Cancellation of discrete time unstable zeros by feedforward control", J. Dyn.. Syst. Meas. Control, 116(1), 33-38. https://doi.org/10.1115/1.2900678
- Hagiwara, T. (1996), "Analytic study on the intrinsic zeros of sampled-data systems", IEEE T. Autom.Contr., 41(2), 261-263. https://doi.org/10.1109/9.481531
- Horiuchi, T., Nakagawa, M., Sugano, M. and Konno, T. (1996), "DEVELOPMENT OF A REAL-TIME HYBRID EXPERIMENTAL SYSTEM WITH ACTUATOR DELAY COMPENSATION", Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico.
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Realtime hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. D., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Jung, R.Y. and Shing, P.B. (2006), "Performance evaluation of a real-time pseudodynamic test system", Earthq. Eng. Struct. D., 35(7), 789-810. https://doi.org/10.1002/eqe.547
- Kailath, T., Sayed, A.H. and Hassibi, B. (2000), Linear Estimation, Prentice Hall.
- Marlin, T.E. (2000), Process control: designing processes and control systems for dynamic performance, McGraw-Hill.
- MATLAB (Version R2014a), The MathWorks, Inc., Natick, Massachusetts, USA.
- Nakashima, M. and Masaoka, N. (1999), "Real-time on-line test for MDOF systems", Earthq. Eng. Struct. D., 28(4), 393-420. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4<393::AID-EQE823>3.0.CO;2-C
- Oppenheim, A.V. and Schafer, R.W. (2010), Discrete-time Signal Processing, Pearson.
- Ou, G., Ozdagli, A.I., Dyke, S.J and Wu, B. (2015), "Robust integrated actuator control: experimental verification and realtime hybrid-simulation implementation", Earthq. Eng. Struct. D., 44(3), 441-460. https://doi.org/10.1002/eqe.2479
- Phillips, B.M. and Spencer, Jr., B.F. (2011), "Model-based feedforward-feedback tracking control for real-time hybrid simulation", NSEL-028, University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, USA.
- Phillips, B.M. and Spencer, Jr., B.F. (2013), "Model-based feedforward-feedback actuator control for real-time hybrid simulation", J. Struct. Eng. - ASCE, 139(7), 1205-1214. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000606
- Phillips, B.M., Takada, S., Spencer, Jr., B.F. and Fujino, Y. (2014), "Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation", Smart Struct. Syst., 14(6), 1081-1103. https://doi.org/10.12989/sss.2014.14.6.1081
- Schneider, A.M., Kaneshige, J.T. and Groutage, F.D. (1991), "Higher order s-to-z mapping functions and their application in digitizing continuous-time filters", Proceedings of the IEEE. 79(11), 1661-1674. https://doi.org/10.1109/5.118990
- Smith, J.O. (2008), Introduction to Digital Filters: With Audio Applications, W3K.
- Tomizuka, M. (1987), "Zero Phase Error Tracking Algorithm for Digital Control", J. Dyn. Syst. Meas. Control, 109.
- Tyan, F. and Tu, S.H. (2015), "A Lyapunov based multi-level controller for semi-active suspension system with an MRF damper", Asian J. Control., 17(2), 615-625. https://doi.org/10.1002/asjc.906
- Wen, J.T. and Potsaid, B. (2004), "An experimental study of a high performance motion control system", Proceedings of the American Control Conference, Boston, MA, USA.
Cited by
- A versatile small-scale structural laboratory for novel experimental earthquake engineering vol.18, pp.3, 2020, https://doi.org/10.12989/eas.2020.18.3.337