DOI QR코드

DOI QR Code

Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat

  • Abouelregal, A.E. (Department of Mathematics, Faculty of Science, Mansoura University) ;
  • Zenkour, A.M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • 투고 : 2017.02.16
  • 심사 : 2017.09.18
  • 발행 : 2017.10.25

초록

This work produces a new model of nonlocal thermoelastic nanobeams of temperature-dependent physical properties. A nanobeam is excited by harmonically varying heat and subjected to an exponential decaying time varying load. The analytical solution is obtained by means of Laplace transform method in time domain. Inversions of transformed solutions have been preceded by using calculus of residues. Effects of nonlocal parameter, variability thermal conductivity, varying load and angular frequency of thermal vibration on studied fields of nanobeam are investigated and discussed.

키워드

참고문헌

  1. Abbas, I.A. and Zenkour, A.M. (2014), "Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating", J. Comput. Theor. Nanosci., 11(3), 642-645. https://doi.org/10.1166/jctn.2014.3407
  2. Abouelregal, A.E. and Zenkour, A.M. (2014), "Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating", IJST, Trans. Mech. Eng., 38, 321-335.
  3. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  4. Allameh, S.M. (2003), "An introduction to mechanical-propertiesrelated issues in MEMS structures", J. Mater. Sci., 38(20), 4115-4123. https://doi.org/10.1023/A:1026369320215
  5. Arefi, M. and Zenkour, A.M. (2017a), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A, 123, 202 (13 pages).
  6. Arefi, M. and Zenkour, A.M. (2017b), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart Nano Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967
  7. Arefi, M. and Zenkour, A.M. (2017c), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004
  8. Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2016), "Application of an enhanced version of the Eringen differential model to nanotechnology", Compos, B, 96, 274-280. https://doi.org/10.1016/j.compositesb.2016.04.023
  9. Berman, R. (1953), "The thermal conductivity of dielectric solids at low temperatures", Adv. Phys., 2(5), 103-140. https://doi.org/10.1080/00018735300101192
  10. Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", 23(12), Mech. Adv. Mater. Struct., 1-58.
  11. Ebrahimi, F. and Salari, E. (2015b), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astron., 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  12. Ebrahimi, F. and Salari, E. (2015c), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. B, 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  13. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  14. Ebrahimi, F. and Shaghaghi, G.R. (2016), "Thermal effects on nonlocal vibrational characteristics of nanobeams with nonideal boundary conditions", Smart Struct. Syst., 18(6), 1087-1109. https://doi.org/10.12989/sss.2016.18.6.1087
  15. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H., Shaghaghi, G.R. (2015a), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Tech., 29, 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  16. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015b), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  17. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  18. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity, solutions of screw dislocation, surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  19. Eringen, A.C. (2002), "Nonlocal Continuum Field Theories", New York: Springer.
  20. Ezzat, M.A., El-Bary, A.A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707
  21. Ghafarian, M. and Ariaei, A. (2016) "Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory", J. Appl. Phys., 120(5), 054301. https://doi.org/10.1063/1.4959991
  22. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  23. Noda, N. (1991), "Thermal stresses in materials with temperature dependent properties", Appl. Mech. Rev., 44(9), 383-397. https://doi.org/10.1115/1.3119511
  24. Ozisik, M.N. and Tzou, D.Y. (1994), "On the wave theory of heat conduction", J. Heat Transf., 116(3), 526-535. https://doi.org/10.1115/1.2910903
  25. Radebe, I.S. and Adali, S. (2015), "Static and sensitivity analysis of nonlocal nanobeams subject to load and material uncertainties by convex modeling", J. Theor. Appl. Mech., 53(2), 345-356.
  26. Sharma, J.N. and Kaur, R. (2015), "Response of anisotropic thermoelastic micro-beam resonators under dynamic loads", Appl. Math. Model., 39(10-11), 2929-2941. https://doi.org/10.1016/j.apm.2014.11.019
  27. Thai, H-T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  28. Tzou, D.Y. (1995a), "A unified approach for heat conduction from macro-to micro-scales", J. Heat Transfer, 117(1), 8-16. https://doi.org/10.1115/1.2822329
  29. Tzou, D.Y. (1995b), "Experimental support for the Lagging behavior in heat propagation", J. Thermophys. Heat Transfer, 9(4), 686-693. https://doi.org/10.2514/3.725
  30. Tzou, D.Y. (1996), "Macro-to microscale heat transfer: the Lagging behavior", Washington, DC, Taylor & Francis.
  31. Uma, S., McConnell, A.D., Asheghi, M., Kurabayashi, K. and Goodson, K.E. (2001), "Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers", Int. J. Thermophys., 22(2), 605-616. https://doi.org/10.1023/A:1010791302387
  32. Yanping, B. and Yilong, H. (2010), "Static deflection analysis of micro-cantilevers beam under transverse loading", Recent Researches in Circuits, Systems, Electronics, Control and Signal Processing, 17-21.
  33. Younis, M.I. (2011), "MEMS Linear and Non-linear Statics and Dynamics", New York, Springer.
  34. Zenkour, A.M. and Abouelregal, A.E. (2014), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
  35. Zenkour, A.M. and Abouelregal, A.E. (2015), "Effects of phaselags in a thermoviscoelastic orthotropic continuum with a cylindrical hole and variable thermal conductivity", Arch. Mech., 67(6), 457-475.
  36. Zenkour, A.M., (2016), "Two-dimensional coupled solution for thermoelastic beams via generalized dual-phase-lags model", Math. Model. Anal., 21(3), 319-335. https://doi.org/10.3846/13926292.2016.1157835
  37. Zenkour, A.M., Mashat, D.S. and Abouelregal, A.E. (2013), "The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties", Acta Mech. Solida Sin., 26(6), 659-670. https://doi.org/10.1016/S0894-9166(14)60009-4
  38. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71, 195404. https://doi.org/10.1103/PhysRevB.71.195404

피인용 문헌

  1. Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model vol.40, pp.6, 2017, https://doi.org/10.12989/scs.2021.40.6.881