DOI QR코드

DOI QR Code

방전플라즈마 소결법으로 제조된 Ta-Cu의 미세조직 및 전기접점 특성

Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite

  • 주원 (한국생산기술연구원 한국희소금속산업기술센터재공학과) ;
  • 김영도 (한양대학교 신소재공학부) ;
  • 심재진 (한국생산기술연구원 한국희소금속산업기술센터재공학과) ;
  • 최상훈 (한국생산기술연구원 한국희소금속산업기술센터재공학과) ;
  • 현승균 (인하대학교 신소재공학과) ;
  • 임경묵 (한국생산기술연구원 한국희소금속산업기술센터재공학과) ;
  • 박경태 (한국생산기술연구원 한국희소금속산업기술센터재공학과)
  • Ju, Won (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Young Do (Division of Materials Science and Engineering, Hanyang University) ;
  • Sim, Jae Jin (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Choi, Sang-Hoon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Hyun, Soong Keun (Department of advanced materials engineering, Inha university) ;
  • Lim, Kyoung Mook (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Park, Kyoung-Tae (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 투고 : 2017.08.12
  • 심사 : 2017.08.24
  • 발행 : 2017.10.28

초록

Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of $900^{\circ}C$ for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300 W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

키워드

참고문헌

  1. H. D. Kim and S. I. Lee: J. Korea Society for Railway, 15 (2012) 597. https://doi.org/10.7782/JKSR.2012.15.6.597
  2. J. K. Kim, D. J. Jang, K. I. Ju, E. H. Lee, S. Y. Um and T. W. Nam: J. Korea Foundrymen's Society, 28 (2008) 184.
  3. P. Verma, O. P. Pandey and A. Verma: J. Mater. Sci. Technol., 20 (2004) 49.
  4. X. Jifeng, C. Shunhua, B. Xiaoping, L. Guowei, Y. Xiaofang and Z. Lidan: Rare Met. Mater. Eng., 43 (2014) 2989. https://doi.org/10.1016/S1875-5372(15)60048-0
  5. S. H. Choi, B. Ali, S. Y. Kim, S. K. Hyun, S. J. Seo, K. T. Park, B. S. Kim, T. S. Kim and J. S. Park: Int. J. Appl. Ceram. Technol., 13 (2016) 258. https://doi.org/10.1111/ijac.12478
  6. J. Buzek, Gyori E.: O. J. E. U., 65 (2011) 88.
  7. P. G. Slade: Electrical Contacts Principles and Application, CRC Press, New York (2014) 879.
  8. Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  9. S. Mardani, H. Norstrom, U. Smith and S. L. Zhang: J. Vac. Sci. Technol., 34 (2016) 1.
  10. F. Fillot, Zs. Tokei and G. P. Beyer: Surf. Sci., 601 (2007) 986. https://doi.org/10.1016/j.susc.2006.11.037
  11. X. Tang, H. Zhang, D. Du, D. Qu, C. Hu, R. Xie and Y. Feng: Int. J. Refract. Met. Hard Mater., 42 (2014) 193. https://doi.org/10.1016/j.ijrmhm.2013.09.005
  12. P. H. Pumphrey and H. Gleiter: J. Microsc., 3 (1974) 349.
  13. R. W. Balluffi: M.S. Thesis, High Angle Grain Boundaries As Sources or Sinks for Point Defects, Massachusetts Institute of Technology Cambridge, Massachusetts (1979) 1.