DOI QR코드

DOI QR Code

Polyphenol Content and Yield Variation of Red-colored Cultivars Depends on Transplanting Date in Southern Plain Region of Korea

남부평야지에서 적미 품종의 이앙시기에 따른 폴리페놀 함량 및 수량변이

  • 배현경 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 오성환 (농촌진흥청) ;
  • 황정동 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 서종호 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 김상열 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 오명규 (농촌진흥청 국립식량과학원 남부작물부)
  • Received : 2017.04.28
  • Accepted : 2017.06.14
  • Published : 2017.09.30

Abstract

For high-quality colored rice production, the cultivation environment is a critical factor. The major environmental factor is temperature, which includes the accumulated and average temperature during vegetative and reproductive stages. Generally, during the cultivation period, the temperature can be controlled by shifting the transplanting date. This study was carried out to determine the optimum transplanting date for high-quality red-colored rice production. Four red-colored rice varieties (Jeokjinju, Jeokjinjuchal, Hongjinju, and Gunganghongmi) were used as test materials. The transplanting dates were May 20 and June 5, 20, and 30 in 2015~2016. The most variable factor controlled by the transplanting date was the grain filling rate. The varieties transplanted on June 30 showed low yields owing to the decrease in the grain filling rate. In contrast, the polyphenol content increased with increasing delay in the transplanting date. Collectively, these two results indicate that the optimum transplanting date was June 20. The average temperature for 30 days after the heading date (30DAH) highly affected the polyphenol content. A lower temperature during the 30DAH induced higher polyphenol contents but also caused low yield. The optimum 30DAH temperature for obtaining a higher yield and polyphenol content was $22{\sim}23^{\circ}C$. Using the average 30DAH and accumulated temperatures, the optimum transplanting date was calculated as June 18 to 24 in Miryang region. The optimum transplanting date of Kyeungsangnamdo region was approximately mid-June to early July, and that of Kyeungsangbukdo region was approximately early to mid-June.

본 실험은 적미의 재배에 있어서 고품질 고수량을 위한 적정이앙시기를 구명하기 위해 네 품종의 적미를 재료로 2015~2016년에 밀양에서 실시하였다. 1. 수량구성요소 중 이앙시기 변화에 따라 가장 크게 달라지는 요인은 등숙률이었고 6월 20일 이후 이앙하면 등숙률이 낮아져 현미수량이 하락하였다. 2. 6월 20일에 이앙했을 때 폴리페놀 함량과 현미수량을 종합한 폴리페놀 생산량이 2,341~3,349 g/10a로 가장 높았다. 3. 출수 후 30일간 평균온도가 낮을 수록 폴리페놀 함량은 증가하였으나 일정 수준 이하로 온도가 떨어지면 현미수량이 감소하였기 때문에 $22{\sim}23^{\circ}C$ 정도가 고품질 고수량 적미를 생산하기에 가장 적정한 온도였다. 4. 출수 후 30일간 평균온도가 $22{\sim}23^{\circ}C$가 되는 시점을 최적 출수기로 하고 출수소요적산온도를 $1,660^{\circ}C$로 하여 계산한 최적 이앙시기는 밀양시가 6월 18일~6월 24일 이었다. 경상남도 지역은 6월 중순에서 7월 초순, 경상북도 지역은 6월 초순에서 6월 중하순이 최적 이앙기였다.

Keywords

References

  1. Chen, X. Q., N. Nagao, T. Itani, and K. Irifune. 2012. Antioxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chem. 135 : 2783-2788. https://doi.org/10.1016/j.foodchem.2012.06.098
  2. Choi, K. J., T. S. Park, C. K. Lee, J. T. Kim, J. H. Kim, K. Y. Ha, Y. W. Yang, C. K. Lee, K. S. Kwak, H. K. Park, J. K. Nam, J. I. Kim, G. J. Han, Y. S. Cho, Y. H. Park, S. W. Han, J. R. Kim, S. Y. Lee, H. G. Choi, S. H. Cho, H. G. Park, D. J. Ahn, W. K. Joung, S. I. Han, S. Y. Kim, K. C. Jang, S. H. Oh, W. D. Seo, J. E. Ra, J. Y. Kim, and H. W. Kang. 2011. Effect of temperature during grain filling stage on grain quality and taste of cooked rice in mid-late maturing rice varieties. Korean J. Crop Sci. 56(4) : 404-412. https://doi.org/10.7740/kjcs.2011.56.4.404
  3. Finocchiaro, F., B. Ferrari, A. Gianinetti, C. Dall'asta, G. Galaverna, F. Scazzina, and N. Pellegrini. 2007. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Mol. Nutr. Food Res. 51 : 1006-1019. https://doi.org/10.1002/mnfr.200700011
  4. Goufo, P., J. Pereira, N. Figueiredo, M. B. P. P. Oliveira, C. Carranca, E. A. S. Rosa, and H. Trindade. 2014. Effect of elevated carbon dioxide ($CO_2$) on phenolic acids, flavonoids, tocopherols, tocotrienols, ${\gamma}$-oryzanol and antioxidant capacities of rice (Oryza sativa L.). Journal of Cereal Science 59(1) : 15-24. https://doi.org/10.1016/j.jcs.2013.10.013
  5. Gunaratne, A., K. Wu, D. Li, A. Bentota, H. Corke, and Y. Z. Cai. 2013. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem. 138 : 1153-1161. https://doi.org/10.1016/j.foodchem.2012.11.129
  6. Kim, S. K., J. H. Shin, D. K. Kang, S. Y. Kim, and S. Y. Park. 2013. Changes of anthocyanidin content and brown rice yield in three pigmented rice varieties among different transplanting and harvesting times. Korean J. Crop Sci. 58(1) : 28-35. https://doi.org/10.7740/kjcs.2013.58.1.028
  7. Lee, Y. S., J. K. Lee, S. Y. Lee, T. Yun, and S. H. Woo, 2008. Effects of different transplanting dates and agroclimatic zones on quality of brown rice and yield of a pigmented rice variety 'Josaengheukchal'. Korean J. Crop Sci. 53(S) : 9-14.
  8. Min, B., L. Gu, A. M. McClung, and M. H. Chen. 2011. Phytochemicals and antioxidant capacities in rice brans of different color. J. Food Sci. 76 : 117-126. https://doi.org/10.1111/j.1750-3841.2010.01929.x
  9. Nam, S. H., S. P. Choi, M. Y. Kang, H. J. Koh, N. Kozukue, and M. Friedman. 2006. Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chem. 94 : 613-620. https://doi.org/10.1016/j.foodchem.2004.12.010
  10. Oki, T., M. Masuda, M. Kobayashi, Y. Nishiba, S. Furuta, I. Suda, and T. Sato. 2002. Polymeric procyanidins as radicalscavenging components in red-hulled rice. J. Agric. Food Chem. 50 : 7524-7529. https://doi.org/10.1021/jf025841z
  11. Qiu, Y., Q. Liu, and T. Beta. 2010. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chem. 121 : 140-147. https://doi.org/10.1016/j.foodchem.2009.12.021
  12. Ryu, S. N., S. Z. Park, and C. T. Ho. 1998. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. J. Food Drug Anal. 6 : 729-736.
  13. Stephen, M. B., W. D. Kim, N. H. Chen, H. Cao, and L. H. Mark, 2016. Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts. J. Agri. Food Chem. 64(26) : 5345-5353. https://doi.org/10.1021/acs.jafc.6b01909
  14. Tian, L., H. Wang, A. M. Abdallah, W. Prinyawiwatkul, and Z. Xu. 2011. Red and white wines inhibit cholesterol oxidation induced by free radicals. Journal of Agricultural and Food Chemistry. 59 : 66453-66458.
  15. Yang, W. H., K. J. Choi, J. Y. Shon, S. G. Kang, S. H. Shin, K. B. Shim, J. H. Kim, H. Y. Jung, J. H. Jang, J. S. Jeong, C. Y. Lee, Y. T. Yun, S. J. Kwon, K. N. An, J. H. Shin, and S. M. Bae. 2015. Effects of temperature and sunshine hours during grain filling stage on the quality-related traits of high quality rice varieties in Korea. Korean J. Crop Sci. 60(3) : 273-281. https://doi.org/10.7740/kjcs.2015.60.3.273
  16. Yawadio, R., S. Tanimori, and N. Morita. 2007. Identification of phenolic compounds isolated from pigmented rice and their aldose reductase inhibitory activities. Food Chem. 101 : 1616-1625. https://doi.org/10.1016/j.foodchem.2006.04.016