DOI QR코드

DOI QR Code

메조-디하이드로구아레틱산 메틸, 아세틸 치환체의 합성 및 이들 화합물들의 LPS에 의해서 유도된 일산화질소(NO)의 억제 효능에 대한 연구

Synthesis of Methylated and Acetylated Derivatives of Meso-dihydroguaretic Acid and Study of Their Inhibitory Activities on LPS Derived Nitric Oxide (NO) Production

  • 최경오 (수원대학교 화공신소재공학부, 뷰티사이언스연구센터) ;
  • 노호식 (수원대학교 화공신소재공학부, 뷰티사이언스연구센터)
  • Choi, Kyungoh (Department of Chemical and Material Engineering, Beauty Science Research Center, The University of Suwon) ;
  • Rho, Ho Sik (Department of Chemical and Material Engineering, Beauty Science Research Center, The University of Suwon)
  • 투고 : 2017.07.10
  • 심사 : 2017.09.22
  • 발행 : 2017.09.30

초록

본 연구는 메조-디하이드로구아레틱산(MDGA, 1)과 합성 유도체(2와 3)의 일산화질소(NO)억제 효능에 대한 내용이다. MDGA는 토후박(Machilus thunbergii Sieb. et Zucc.)껍질에서 분리된 리그난 화합물이다. 본 연구자들은 디메틸로 치환된 화합물(2)과 디아세틸로 치환된 화합물(3)을 합성하였고, 이 두 화합물의 일산화질소 억제 효능을 MDGA (1)와 비교하여 측정하였다. MDGA (1)와 화합물(3)은 LPS에 의해서 유도된 일산화질소 억제 효능을 나타내었다. RT-PCR 분석을 통해 MDGA (1)와 화합물(3)의 일산화질소 억제 효능은 iNOS의 mRNA 발현의 감소에 기인함을 확인하였다. 이러한 실험 결과로부터 디아세틸로 치환된 화합물(3)은 MDGA의 프로드럭으로 사용될 수 있음을 확인하였다.

This study was conducted to examine the inhibitory effects of meso-dihydroguaretic acid (MDGA, 1) and its synthetic derivatives (compound 2 and 3) against NO production. MDGA is a lignan component isolated from the bark of Machilus thunbergii Sieb. et Zucc. We synthesized dimethylated MDGA (2), diacetylated MDGA (3) and compared NO inhibition of two derivatives with that of MDGA (1). MDGA (1) and compound 3 showed suppressive effects against the generation of NO in LPS-activated macrophages. RT-PCR analysis suggested that MDGA (1) and compound 3 inhibited NO production through the suppression of iNOS mRNA expression. From these results, diacetylated MDGA (3) can be used as a pro-drug for MDGA.

키워드

참고문헌

  1. B. S. Chung and M, G, Shin, Dictionary of Korean Folk Medicine, Yong Lim Sa, p. 458 (1990).
  2. U. Y. Yu, S. Y. Kang, H. Y. Park, S. H. Sung, E. J. Lee, S. Y. Kim, and Y. C. Kim, Antioxidant lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes, J. Pharm. Pharmacol., 52, 1163 (2000). https://doi.org/10.1211/0022357001774949
  3. H. Shimomura, Y. Sashida, and M. Oohara, Lignans from Machilus thunbergii, Phytochemistry, 26, 1513 (1987). https://doi.org/10.1016/S0031-9422(00)81847-6
  4. H. Karikome, Y. Mimaki, and Y. Sashida, A butanolide and phenolics from Machilus thunbergii, Phytochemistry, 30, 315 (1991). https://doi.org/10.1016/0031-9422(91)84145-I
  5. C. J. Ma, S. H. Sung, and Y. C. Kim, Neuroprotective lignans from the bark of Machilus thunbergii, Planta Med., 70, 79 (2004). https://doi.org/10.1055/s-2004-815463
  6. M. K. Lee, H. Yang, C. J. Ma, and Y. C. Kim, Stimulatory activity of lignans from Machilus thunbergii on osteoblast differenctiation, Biol. Pharm. Bull., 30, 814 (2007). https://doi.org/10.1248/bpb.30.814
  7. H. I. Moo and J. H. Chung, Meso-dihydroguaiaretic acid from Machilus thunbergii SIEB et Zucc., and its effects on the expression of matrix metalloproteinase- 2, 9 cause by ultraviolet irradiated cultured human keratinocyte cells (HaCaT), Biol. Pharm. Bull., 28, 2176 (2005). https://doi.org/10.1248/bpb.28.2176
  8. H. Y. Park, H. S. Rho, D. H. Kim, H. G. D. H. Kim, Q. Q. He, and J. H. Yeon, Modified rancimat method for evaluation of antioxidative effect against skin lipid, Bull. Korean Chem. Soc., 31, 1751 (2010). https://doi.org/10.5012/bkcs.2010.31.6.1751
  9. G. Li, H. K. Ju, H. W. Chang, Y. Jahng, S. H. Lee, and J. K. Son, Melanin biosynthesis inhibitors from the bark of Machilus thunbergii, Biol. Pharm. Bull., 26, 1039 (2003). https://doi.org/10.1248/bpb.26.1039
  10. J. H. Ryu, H. Ahn, J. Y. Kim, and Y. K. Kim, Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages, Phytother. Res., 17, 485 (2003). https://doi.org/10.1002/ptr.1180
  11. J. R. Kanwar, R. K. Kanwar, H. Burrow, and S. Baratchi, Recent advances on the roles of NO in cancer and chronic inflammatory disorders, Curr. Med. Chem., 19, 2373 (2009).
  12. D. S. Bredt, Endogenous nitric oxide synthesis: biological functions and phathophysiology, Free. Radic. Res., 31, 577 (1999). https://doi.org/10.1080/10715769900301161
  13. T. J. Guzik, R. Korbut, and T. Adamek-Guzik, Nitric oxide and superoxide in inflammation and immune regulation, J. Physiol. Pharmacol., 54, 469 (2003).
  14. H. S. Rho, H. S. Baek, J. W. Yoo, S. J. Kim, M. K. Kim, D. H. Kim, and I. S. Chang, Biological activities of 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide : A mimic compound of trans-resveratrol, Bull. Korean Chem. Soc., 28, 837 (2007). https://doi.org/10.5012/bkcs.2007.28.5.837
  15. J. Park, J. H. Park, H. J. Suh, I. C. Lee, J. Koh, and Y. C. Boo, Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis, Arch. Dermatol., 306, 475 (2014). https://doi.org/10.1007/s00403-014-1440-3
  16. H. Yoo, S. H. Kim, J. Lee, H. J. Kim, S. H. Seo, B. Y. Chung, C. Jin, and Y. S. Lee, Synthesis and antioxidants activity of 3-methoxyflavones,. Bull. Korean Chem. Soc., 26, 2057 (2005). https://doi.org/10.5012/bkcs.2005.26.12.2057
  17. Z. H. Shi, N. G. Li, Y. P. Tang, J. P. Yang, and J. A. Duan, Metabolism-based synthesis, biological evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors, Eur. J. Med. Chem., 54, 210 (2012). https://doi.org/10.1016/j.ejmech.2012.04.044
  18. K, Koide, S. Osman, A. L. Garner, F. Song, T. Dixon, J. S. Greenberger, and M. W. Epperly, The use of 3,5,4'-tri-O-acetylresveratrol as a potent pro-drug for resveratrol protects mice from g-irradiation- induced death, ACS Med. Chem. Lett., 2, 270 (2011). https://doi.org/10.1021/ml100159p
  19. L. Ma, Y. Zhao, B. Li, Q. Wang, X. Liu, X. Chen, Y. Nan, L. Liang, R. Chang, L. Liang, P. Li, and F. Jin, 3,5,4'-tri-O-acetylresveratrol attenuates seawater aspiration-induced lung injury by inhibiting activation of nuclearfactor-kappa B and hypoxia-inducible factor- 1a, Respir. Physiol. Neurobiol., 185, 608 (2013). https://doi.org/10.1016/j.resp.2012.11.016