DOI QR코드

DOI QR Code

Three-dimensional printing for craniomaxillofacial regeneration

  • Gaviria, Laura (Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio) ;
  • Pearson, Joseph J. (Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio) ;
  • Montelongo, Sergio A. (Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio) ;
  • Guda, Teja (Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio) ;
  • Ong, Joo L. (Department of Biomedical Engineering, College of Engineering, The University of Texas at San Antonio)
  • Received : 2017.08.31
  • Accepted : 2017.09.11
  • Published : 2017.10.31

Abstract

Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.

Keywords

References

  1. Gadre KS, Halli R, Joshi S, Ramanojam S, Gadre PK, Kunchur R, et al. Incidence and pattern of cranio-maxillofacial injuries: a 22 year retrospective analysis of cases operated at major trauma hospitals/centres in Pune, India. J Maxillofac Oral Surg 2013;12:372-8. https://doi.org/10.1007/s12663-012-0446-7
  2. Henderson R. Maxillofacial injuries [Internet]. Leeds, UK: Patient, 2014 [cited 2017 Jun 5]. Available from: patient.info/doctor/maxillofacial-injuries.
  3. Gassner R, Tuli T, Hachl O, Rudisch A, Ulmer H. Cranio-maxillofacial trauma: a 10 year review of 9,543 cases with 21,067 injuries. J Craniomaxillofac Surg 2003;31:51-61. https://doi.org/10.1016/S1010-5182(02)00168-3
  4. Hikita A, Chung UI, Hoshi K, Takato T. Bone regenerative medicine in oral and maxillofacial region using a three-dimensional printer. Tissue Eng Part A 2017;23:515-21.
  5. Lew TA, Walker JA, Wenke JC, Blackbourne LH, Hale RG. Characterization of craniomaxillofacial battle injuries sustained by United States service members in the current conflicts of Iraq and Afghanistan. J Oral Maxillofac Surg 2010;68:3-7. https://doi.org/10.1016/j.joms.2009.06.006
  6. Hale RG, Lew T, Wenke JC. Craniomaxillofacial battle injuries: injury patterns, conventional treatment limitations and direction of future research. Singapore Dent J 2010;31:1-8. https://doi.org/10.1016/S0377-5291(12)70002-0
  7. Chan RK, Siller-Jackson A, Verrett AJ, Wu J, Hale RG. Ten years of war: a characterization of craniomaxillofacial injuries incurred during operations Enduring Freedom and Iraqi Freedom. J Trauma Acute Care Surg 2012;73(6 Suppl 5):S453-8. https://doi.org/10.1097/TA.0b013e3182754868
  8. Brown Baer PR, Wenke JC, Thomas SJ, Hale CR. Investigation of severe craniomaxillofacial battle injuries sustained by U.S. service members: a case series. Craniomaxillofac Trauma Reconstr 2012;5:243-52. https://doi.org/10.1055/s-0032-1329542
  9. Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today 2003;8:980-9. https://doi.org/10.1016/S1359-6446(03)02866-6
  10. Alsberg E, Hill EE, Mooney DJ. Craniofacial tissue engineering. Crit Rev Oral Biol Med 2001;12:64-75. https://doi.org/10.1177/10454411010120010501
  11. Kraft A, Abermann E, Stigler R, Zsifkovits C, Pedross F, Kloss F, et al. Craniomaxillofacial trauma: synopsis of 14,654 cases with 35,129 injuries in 15 years. Craniomaxillofac Trauma Reconstr 2012;5:41-50. https://doi.org/10.1055/s-0031-1293520
  12. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today 2013;16:496-504. https://doi.org/10.1016/j.mattod.2013.11.017
  13. Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 2012;64:1257-76. https://doi.org/10.1016/j.addr.2012.05.006
  14. Klammert U, Gbureck U, Vorndran E, Rodiger J, Meyer-Marcotty P, Kubler AC. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Craniomaxillofac Surg 2010;38:565-70. https://doi.org/10.1016/j.jcms.2010.01.009
  15. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg 2014;4:9-18. https://doi.org/10.4103/2231-0746.133065
  16. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 2010;30:2563-7. https://doi.org/10.1016/j.jeurceramsoc.2010.04.037
  17. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014;35:4026-34. https://doi.org/10.1016/j.biomaterials.2014.01.064
  18. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:661-6. https://doi.org/10.1016/j.tripleo.2009.05.023
  19. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014;86:3240-53. https://doi.org/10.1021/ac403397r
  20. Farre-Guasch E, Wolff J, Helder MN, Schulten EA, Forouzanfar T, Klein-Nulend J. Application of additive manufacturing in oral and maxillofacial surgery. J Oral Maxillofac Surg 2015;73:2408-18. https://doi.org/10.1016/j.joms.2015.04.019
  21. Xiao K, Zardawi F, van Noort R, Yates JM. Developing a 3D colour image reproduction system for additive manufacturing of facial prostheses. Int J Adv Manuf Technol 2014;70:2043-9. https://doi.org/10.1007/s00170-013-5448-1
  22. Butscher A, Bohner M, Hofmann S, Gauckler L, Muller R. Structural and material approaches to bone tissue engineering in powderbased three-dimensional printing. Acta Biomater 2011;7:907-20. https://doi.org/10.1016/j.actbio.2010.09.039
  23. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015;9:4. https://doi.org/10.1186/s13036-015-0001-4
  24. Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2016;2:1679-93. https://doi.org/10.1021/acsbiomaterials.6b00121
  25. Liu YF, Xu LW, Zhu HY, Liu SS. Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomed Eng Online 2014;13:63. https://doi.org/10.1186/1475-925X-13-63
  26. Schwam ZG, Chang MT, Barnes MA, Paskhover B. Applications of 3-dimensional printing in facial plastic surgery. J Oral Maxillofac Surg 2016;74:427-8. https://doi.org/10.1016/j.joms.2015.10.016
  27. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015;219:521-9. https://doi.org/10.1038/sj.bdj.2015.914
  28. Malik HH, Darwood AR, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res 2015;199:512-22. https://doi.org/10.1016/j.jss.2015.06.051
  29. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 2010;5:335-41. https://doi.org/10.1007/s11548-010-0476-x
  30. Cillo JE Jr, Basi D, Peacock Z, Aghaloo T, Bouloux G, Dodson T, et al. Proceedings of the American Association of Oral and Maxillofacial Surgeons 2015 Research Summit. J Oral Maxillofac Surg 2016;74:429-37. https://doi.org/10.1016/j.joms.2015.11.029
  31. Velasco I, Vahdani S, Ramos H, Guzman J. Clinical application of desktop three-dimensional printing technology in ablative and reconstructive maxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol 2017;123:e23-4. https://doi.org/10.1016/j.oooo.2016.07.030
  32. Thomas DJ, Azmi MABM, Tehrani Z. 3D additive manufacture of oral and maxillofacial surgical models for preoperative planning. Int J Adv Manuf Technol 2014;71:1643-51. https://doi.org/10.1007/s00170-013-5587-4
  33. Leukers B, Gulkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 2005;16:1121-4. https://doi.org/10.1007/s10856-005-4716-5
  34. Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W, et al. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 2007;18:909-16. https://doi.org/10.1007/s10856-006-0073-2
  35. Zhou Z, Buchanan F, Mitchell C, Dunne N. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C Mater Biol Appl 2014;38:1-10. https://doi.org/10.1016/j.msec.2014.01.027
  36. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 2005;366:1809-20. https://doi.org/10.1016/S0140-6736(05)67728-8
  37. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 2012;91:914-20. https://doi.org/10.1177/0022034512457373
  38. Wang J, Zhang R, Shen Y, Xu C, Qi S, Lu L, et al. Recent advances in cell sheet technology for periodontal regeneration. Curr Stem Cell Res Ther 2014;9:162-73. https://doi.org/10.2174/1574888X09666140213150218
  39. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015;9:1205-16. https://doi.org/10.1002/term.1899
  40. Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol 2000 2006;40:11-28. https://doi.org/10.1111/j.1600-0757.2005.00141.x
  41. Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, et al. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res 2014;93:1203-11. https://doi.org/10.1177/0022034514540682
  42. Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 2014;93:1212-21. https://doi.org/10.1177/0022034514544301
  43. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2010;2:022001. https://doi.org/10.1088/1758-5082/2/2/022001
  44. Chen YW, Hsu TT, Wang K, Shie MY. Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells. Mater Sci Eng C Mater Biol Appl 2016;60:374-83. https://doi.org/10.1016/j.msec.2015.11.064
  45. Gercek I, Tigli RS, Gumusderelioglu M. A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying. J Biomed Mater Res A 2008;86:1012-22.
  46. Oortgiesen DA, Yu N, Bronckers AL, Yang F, Walboomers XF, Jansen JA. A three-dimensional cell culture model to study the mechano-biological behavior in periodontal ligament regeneration. Tissue Eng Part C Methods 2012;18:81-9. https://doi.org/10.1089/ten.tec.2011.0367
  47. Li Y, Jin F, Du Y, Ma Z, Li F, Wu G, et al. Cementum and periodontal ligament-like tissue formation induced using bioengineered dentin. Tissue Eng Part A 2008;14:1731-42. https://doi.org/10.1089/ten.tea.2007.0268
  48. Park CH, Kim KH, Rios HF, Lee YM, Giannobile WV, Seol YJ. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J Dent Res 2014;93:1304-12. https://doi.org/10.1177/0022034514550716
  49. Eleuterio E, Trubiani O, Sulpizio M, Di Giuseppe F, Pierdomenico L, Marchisio M, et al. Proteome of human stem cells from periodontal ligament and dental pulp. PLoS One 2013;8:e71101. https://doi.org/10.1371/journal.pone.0071101
  50. Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 2012;56:495-520. https://doi.org/10.1016/j.cden.2012.05.009
  51. Liu B, Song YW, Jin L, Wang ZJ, Pu DY, Lin SQ, et al. Silk structure and degradation. Colloids Surf B Biointerfaces 2015;131:122-8. https://doi.org/10.1016/j.colsurfb.2015.04.040
  52. Yeasmin S, Ceccarelli J, Vigen M, Carrion B, Putnam AJ, Tarle SA, et al. Stem cells derived from tooth periodontal ligament enhance functional angiogenesis by endothelial cells. Tissue Eng Part A 2014;20:1188-96. https://doi.org/10.1089/ten.tea.2013.0512
  53. Alves LB, Mariguela VC, Grisi MF, Souza SL, Novaes Junior AB, Taba Junior M, et al. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel. J Appl Oral Sci 2015;23:206-14. https://doi.org/10.1590/1678-775720140462
  54. Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 2005;11:469-78. https://doi.org/10.1089/ten.2005.11.469
  55. Dan H, Vaquette C, Fisher AG, Hamlet SM, Xiao Y, Hutmacher DW, et al. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials 2014;35:113-22. https://doi.org/10.1016/j.biomaterials.2013.09.074
  56. Iwasaki K, Komaki M, Yokoyama N, Tanaka Y, Taki A, Honda I, et al. Periodontal regeneration using periodontal ligament stem celltransferred amnion. Tissue Eng Part A 2014;20:693-704. https://doi.org/10.1089/ten.tec.2013.0571
  57. Li X, Cui R, Sun L, Aifantis KE, Fan Y, Feng Q, et al. 3D-printed biopolymers for tissue engineering application. Int J Polym Sci 2014;2014:1-13.
  58. Li J, He L, Zhou C, Zhou Y, Bai Y, Lee FY, et al. 3D printing for regenerative medicine: from bench to bedside. MRS Bull 2015;40:145-54. https://doi.org/10.1557/mrs.2015.5
  59. Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010;89:842-7. https://doi.org/10.1177/0022034510370803
  60. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Threedimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 2014;20:1342-51. https://doi.org/10.1089/ten.tea.2013.0386
  61. Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater 2016;5:676-87. https://doi.org/10.1002/adhm.201500758
  62. Ma Y, Ji Y, Huang G, Ling K, Zhang X, Xu F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication 2015;7:044105. https://doi.org/10.1088/1758-5090/7/4/044105
  63. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, et al. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res 2015;94(9 Suppl):153S-7S. https://doi.org/10.1177/0022034515588303
  64. Yildirim S, Fu SY, Kim K, Zhou H, Lee CH, Li A, et al. Tooth regeneration: a revolution in stomatology and evolution in regenerative medicine. Int J Oral Sci 2011;3:107-16. https://doi.org/10.4248/IJOS11042
  65. Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J Dent Res 2017;96:524-30. https://doi.org/10.1177/0022034516688659
  66. Siamos G, Winkler S, Boberick KG. Relationship between implant preload and screw loosening on implant-supported prostheses. J Oral Implantol 2002;28:67-73. https://doi.org/10.1563/1548-1336(2002)028<0067:TRBIPA>2.3.CO;2
  67. Cross D, El-Angbawi A, McLaughlin P, Keightley A, Brocklebank L, Whitters J, et al. Developments in autotransplantation of teeth. Surgeon 2013;11:49-55. https://doi.org/10.1016/j.surge.2012.10.003
  68. Kato A, Ohno N. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing. Clin Oral Investig 2009;13:43-6. https://doi.org/10.1007/s00784-008-0198-4
  69. Li J, Zhang L, Lv S, Li S, Wang N, Zhang Z. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model. J Biotechnol 2011;151:87-93. https://doi.org/10.1016/j.jbiotec.2010.10.080
  70. Bose S, Darsell J, Hosick HL, Yang L, Sarkar DK, Bandyopadhyay A. Processing and characterization of porous alumina scaffolds. J Mater Sci Mater Med 2002;13:23-8. https://doi.org/10.1023/A:1013622216071
  71. Sumita Y, Honda MJ, Ohara T, Tsuchiya S, Sagara H, Kagami H, et al. Performance of collagen sponge as a 3-D scaffold for toothtissue engineering. Biomaterials 2006;27:3238-48. https://doi.org/10.1016/j.biomaterials.2006.01.055
  72. Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissueengineered tooth regeneration. Biomaterials 2007;28:680-9. https://doi.org/10.1016/j.biomaterials.2006.09.039
  73. Sloan AJ, Rutherford RB, Smith AJ. Stimulation of the rat dentinepulp complex by bone morphogenetic protein-7 in vitro. Arch Oral Biol 2000;45:173-7. https://doi.org/10.1016/S0003-9969(99)00131-4
  74. Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 2002;43:387-90. https://doi.org/10.1080/03008200290000574
  75. Kuo TF, Huang AT, Chang HH, Lin FH, Chen ST, Chen RS, et al. Regeneration of dentin-pulp complex with cementum and periodontal ligament formation using dental bud cells in gelatinchondroitin-hyaluronan tri- copolymer scaffold in swine. J Biomed Mater Res A 2008;86:1062-8.
  76. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002;81:695-700. https://doi.org/10.1177/154405910208101008
  77. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 2004;83:523-8. https://doi.org/10.1177/154405910408300703
  78. Anitua E, Alkhraisat MH, Orive G. Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J Control Release 2012;157:29-38. https://doi.org/10.1016/j.jconrel.2011.07.004
  79. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004;83:590-5. https://doi.org/10.1177/154405910408300802
  80. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 2010;16:605-15. https://doi.org/10.1089/ten.tea.2009.0518
  81. Janjic K, Cvikl B, Moritz A, Agis H. Dental pulp regeneration. Int J Stomat Occ Med 2016;8(Suppl 1):1-9. https://doi.org/10.1007/s12548-015-0139-1
  82. Guo W, He Y, Zhang X, Lu W, Wang C, Yu H, et al. The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials 2009;30:6708-23. https://doi.org/10.1016/j.biomaterials.2009.08.034
  83. Li R, Guo W, Yang B, Guo L, Sheng L, Chen G, et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials 2011;32:4525-38. https://doi.org/10.1016/j.biomaterials.2011.03.008
  84. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 2006;12:2069-75. https://doi.org/10.1089/ten.2006.12.2069
  85. Yang B, Chen G, Li J, Zou Q, Xie D, Chen Y, et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold. Biomaterials 2012;33:2449-61. https://doi.org/10.1016/j.biomaterials.2011.11.074
  86. Wei F, Song T, Ding G, Xu J, Liu Y, Liu D, et al. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine. Stem Cells Dev 2013;22:1752-62. https://doi.org/10.1089/scd.2012.0688
  87. Rosa V, Zhang Z, Grande RH, Nor JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013;92:970-5. https://doi.org/10.1177/0022034513505772
  88. Guda T, Appleford M, Oh S, Ong JL. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art. Curr Top Med Chem 2008;8:290-9. https://doi.org/10.2174/156802608783790956
  89. McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ 2014;7:479-86. https://doi.org/10.1002/ase.1475
  90. Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res 2015;94(9 Suppl):143S-52S. https://doi.org/10.1177/0022034515588885
  91. Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 2012;28:113-22. https://doi.org/10.1016/j.dental.2011.09.010
  92. Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 2012;33:5560-73. https://doi.org/10.1016/j.biomaterials.2012.04.038
  93. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100:1249-60. https://doi.org/10.1161/01.RES.0000265074.83288.09
  94. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007;213:341-7. https://doi.org/10.1002/jcp.21200
  95. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-20. https://doi.org/10.1126/science.1151526
  96. Yan M, Yu Y, Zhang G, Tang C, Yu J. A journey from dental pulp stem cells to a bio-tooth. Stem Cell Rev 2011;7:161-71. https://doi.org/10.1007/s12015-010-9155-0
  97. Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, et al. Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 2014;5:36.
  98. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97:13625-30. https://doi.org/10.1073/pnas.240309797
  99. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003;100:5807-12. https://doi.org/10.1073/pnas.0937635100
  100. Ma L, Makino Y, Yamaza H, Akiyama K, Hoshino Y, Song G, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 2012;7:e51777. https://doi.org/10.1371/journal.pone.0051777
  101. Wang X, Sha XJ, Li GH, Yang FS, Ji K, Wen LY, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 2012;57:1231-40. https://doi.org/10.1016/j.archoralbio.2012.02.014
  102. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 2006;1:e79. https://doi.org/10.1371/journal.pone.0000079
  103. de Wert G, Mummery C. Human embryonic stem cells: research, ethics and policy. Hum Reprod 2003;18:672-82. https://doi.org/10.1093/humrep/deg143
  104. Michalski MH, Ross JS. The shape of things to come: 3D printing in medicine. JAMA 2014;312:2213-4. https://doi.org/10.1001/jama.2014.9542

Cited by

  1. Characterization and in ovo vascularization of a 3D-printed hydroxyapatite scaffold with different extracellular matrix coatings under perfusion culture vol.7, pp.12, 2017, https://doi.org/10.1242/bio.034488
  2. 치과 진료실에서 3D 프린트의 활용 vol.27, pp.2, 2017, https://doi.org/10.15522/jkaed.2018.27.2.82
  3. Reconstruction of bilateral ramus-condyle unit defect using custom titanium prosthesis with preservation of both condyles vol.124, pp.None, 2017, https://doi.org/10.1016/j.jmbbm.2021.104765