Acknowledgement
Supported by : National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China
References
- Baber, T.T., Maddox, R.A. and Orozco, C.E. (1998), "A finite element model for harmonically excited viscoelastic sandwich beams", Comput. Struct., 66, 105-113. https://doi.org/10.1016/S0045-7949(97)00046-1
- Bellan, C. and Bossis, G. (2002), "Field dependence of viscoelastic properties of MR elastomers", Int. J. Modern Phys. B, 16, 2447-2453. https://doi.org/10.1142/S0217979202012499
- Bose, H. (2007), "Viscoelastic properties of silicone-based magnetorheological elastomers", Int. J. Modern Phys. B, 21, 4790-4797. https://doi.org/10.1142/S0217979207045670
- Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures -theory and application: a review of recent advances", J. Intell. Mater. Syst. Struct., 23, 1181-1195. https://doi.org/10.1177/1045389X12445029
- Caughey, T.K. (1971), "Nonlinear theory of random vibrations", Adv. Appl. Mech., 11, 209-253.
- Choi, W.J., Xiong, Y.P. and Shenoi, R.A. (2010), "Vibration characteristics of sandwich beam with steel skins and magnetorheological elastomer cores", Adv. Struct. Eng., 13, 837-847. https://doi.org/10.1260/1369-4332.13.5.837
- Daya, E.M., Azrar, L. and Potier-Ferry, M. (2004), "An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams", J. Sound Vib., 271, 789-813. https://doi.org/10.1016/S0022-460X(03)00754-5
- Demchuk, S.A. and Kuz'min, V.A. (2002), "Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation", J. Eng. Phys. Thermophy., 75, 396-400. https://doi.org/10.1023/A:1015697723112
- Ditaranto, R.A. (1965), "Theory of the vibratory bending for elastic and viscoelastic layered finite-length beams", ASME J. Appl. Mech., 32, 881-886. https://doi.org/10.1115/1.3627330
- Dwivedy, S.K., Mahendra, N. and Sahu, K.C. (2009), "Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam", J. Sound Vib., 325, 686-704. https://doi.org/10.1016/j.jsv.2009.03.039
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5, 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Elishakoff, I. and Falsone, G. (1993), "Some recent developments in stochastic linearization technique", Computational Stochastic Mechanics, Elsevier Applied Science, London.
- Frostig, Y. and Baruch, M. (1994), "Free vibrations of sandwich beams with a transversely flexible core: a high order approach", J. Sound Vib., 176, 195-208. https://doi.org/10.1006/jsvi.1994.1368
- Hernandez, A., Marichal, G.N., Poncela, A.V. and Padron, I. (2015), "Design of intelligent control strategies using a magnetorheological damper for span structure", Smart Struct. Syst., 15, 931-947. https://doi.org/10.12989/sss.2015.15.4.931
- Hoang, N., Zhang, N. and Du, H. (2011), "An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction", Smart Mater. Struct., 20, 015019. https://doi.org/10.1088/0964-1726/20/1/015019
- Hu, G.L., Guo, M., Li, W.H., Du, H.P. and Alici, G. (2011), "Experimental investigation of the vibration characteristics of a magnetorheological elasmoter sandwich beam under nonhomogeneous small magnetic fields", Smart Mater. Struct., 20, 127001. https://doi.org/10.1088/0964-1726/20/12/127001
- Hu, W. and Wereley, N.M. (2008), "Hybrid magnetorheological fluid-elastomeric lag dampers for helicopter stability augmentation", Smart Mater. Struct., 17, 045021. https://doi.org/10.1088/0964-1726/17/4/045021
- Jacques, N., Daya, E.M. and Potier-Ferry, M. (2010), "Nonlinear vibration of viscoelastic sandwich beams by the harmonic balance and finite element methods", J. Sound Vib., 329, 4251-4265. https://doi.org/10.1016/j.jsv.2010.04.021
- Jung, H.J., Eem, S.H., Jang, D.D. and Koo, J.H. (2011), "Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers", J. Intell. Mater. Syst. Struct., 22, 1439-1450. https://doi.org/10.1177/1045389X11414224
- Kaleta, J., Krolewicz, M. and Lewandowski, D. (2011), "Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices", Smart Mater. Struct., 20, 085006. https://doi.org/10.1088/0964-1726/20/8/085006
- Koo, J.H., Khan, F., Jang, D.D. and Jung, H.J. (2010), "Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings", Smart Mater. Struct., 19, 117002. https://doi.org/10.1088/0964-1726/19/11/117002
- Kovac, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced nonlinear vibrations of a damped sandwich beam", J. Sound Vib., 17, 25-39. https://doi.org/10.1016/0022-460X(71)90131-3
- Lee, H.H. (1998), "Non-linear vibration of a multilayer sandwich beam with viscoelastic layers", J. Sound Vib., 216, 601-621. https://doi.org/10.1006/jsvi.1998.1716
- Li, Z. and Crocker, M.J. (2005), "A review on vibration damping in sandwich composite structures", Int. J. Acoust. Vib., 10, 159-169.
- Mahmoudkhani, S. and Haddadpour, H. (2013), "Nonlinear vibration of viscoelastic sandwich plates under narrow-band random excitations", Nonlin. Dyn., 74, 165-188. https://doi.org/10.1007/s11071-013-0956-y
- Mahmoudkhani, S., Haddadpour, H. and Navazi, H.M. (2014), "The effects of nonlinearities on the vibration of viscoelastic sandwich plates", Int. J. Nonlin. Mech., 62, 41-57. https://doi.org/10.1016/j.ijnonlinmec.2014.01.002
- Mead, D.J. and Markus, S. (1969), "The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions", J. Sound Vib., 10, 163-175. https://doi.org/10.1016/0022-460X(69)90193-X
- Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2011), "Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions", J. Sound Vib., 330, 1837-1859. https://doi.org/10.1016/j.jsv.2010.10.041
- Ni, Y.Q., Ying, Z.G. and Chen, Z.H. (2011), "Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core", J. Sound Vib., 330, 4369-4383. https://doi.org/10.1016/j.jsv.2011.04.020
- Rajagopal, S.V., Singh, G., Rao, Y.V.K.S. and Narayanan, S. (1986), "Non-linear vibrations of sandwich plates", J. Sound Vib., 110, 261-269. https://doi.org/10.1016/S0022-460X(86)80209-7
- Rajamohan, V., Rakheja, S. and Sedaghati, R. (2010), "Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid", J. Sound Vib., 329, 3451-3469. https://doi.org/10.1016/j.jsv.2010.03.010
- Rao, D.K. (1977), "Forced vibration of a damped sandwich beam subjected to moving forces", J. Sound Vib., 54, 215-227. https://doi.org/10.1016/0022-460X(77)90024-4
- Rao, Y.V.K.S. and Nakra, B.C. (1974), "Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores", J. Sound Vib., 34, 309-326. https://doi.org/10.1016/S0022-460X(74)80315-9
- Roberts, J.B. and Spanos, P.D. (1990), Random Vibration and Statistical Linearization, John Wiley & Sons, Chichester.
- Shen, Y., Golnaraghi, M.F. and Heppler, G.R. (2004), "Experimental research and modeling of magnetorheological elastomers", J. Intell. Mater. Syst. Struct., 15, 27-35. https://doi.org/10.1177/1045389X04039264
- Socha, L. and Soong, T.T. (1991), "Linearization in analysis of nonlinear stochastic systems", Appl. Mech. Rev., 44, 399-422. https://doi.org/10.1115/1.3119486
- Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", ASCE J. Struct. Eng., 129, 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Timoshenko, S.P., Young, D.H. and Weaver, W. (1974), Vibration Problems in Engineering, John Wiley & Sons, New York.
- Vaicaitis, R., Liu, S. and Jotautiene, E. (2008), "Nonlinear random vibrations of a sandwich beam adaptive to electrorheological materials", Mechanika, 71, 38-44.
- Xi, D.C., Chen, Q.H. and Cai, G.Q. (1986), "Control effects of damped sandwich beam on random vibration", J. Vib. Acoust. Stress Reliab. Des., 108, 65-68. https://doi.org/10.1115/1.3269305
- Xia, Z.Q. and Lukasiewicz, S. (1994), "Non-linear, free, damped vibrations of sandwich plates", J. Sound Vib., 175, 219-232. https://doi.org/10.1006/jsvi.1994.1324
- Yan, M.J. and Dowell, E.H. (1972), "Governing equations for vibrating constrained-layer damping sandwich plates and beams", ASME J. Appl. Mech., 94, 1041-1046.
- Ying, Z.G. and Ni, Y.Q. (2016), "A response-adjustable sandwich beam with harmonic distribution parameters under stochastic excitations", Int. J. Struct. Stab. Dyn., 17, 1750075.
- Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2015a), "Stochastic microvibration response characteristics of a sandwich plate with MR visco-elastomer core and mass", Smart Struct. Syst., 16, 141-162. https://doi.org/10.12989/sss.2015.16.1.141
- Ying, Z.G., Ni, Y.Q. and Huan, R.H. (2015b), "Stochastic microvibration response analysis of a magnetorheological viscoelastomer based sandwich beam under localized magnetic fields", Appl. Math. Model., 39, 5559-5566. https://doi.org/10.1016/j.apm.2015.01.028
- Ying, Z.G., Ni, Y.Q. and Sajjadi, M. (2013), "Nonlinear dynamic characteristics of magneto-rheological visco-elastomers", Sci. Chin. Technol. Sci., 56, 878-883.
- York, D., Wang, X. and Gordaninejad, F. (2007), "A new MR fluid-elastomer vibration isolator", J. Intell. Mater. Syst. Struct., 18, 1221-1225. https://doi.org/10.1177/1045389X07083622
- Yu, Y.Y. (1962), "Damping of flexural vibrations of sandwich plates", J. Aerosp. Sci., 29, 790-803. https://doi.org/10.2514/8.9607
- Zhou, G.Y. and Wang, Q. (2005), "Magnetorheological elastomerbased smart sandwich beams with nonconduction skins", Smart Mater. Struct., 14, 1001-1009. https://doi.org/10.1088/0964-1726/14/5/038
- Zhou, G.Y. and Wang, Q. (2006), "Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams", Smart Mater. Struct., 15, 59-74. https://doi.org/10.1088/0964-1726/15/1/035