DOI QR코드

DOI QR Code

곰팡이 독소 오염 경감을 위한 옥수수 재배법

Corn Cultivation to Reduce the Mycotoxin Contamination

  • 김양선 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 강인정 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 신동범 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 노재환 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 정진교 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 허성기 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 심형권 (농촌진흥청 국립식량과학원 재배환경과)
  • Kim, Yangseon (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, In Jeong (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Dong Bum (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Roh, Jae Hwan (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jung, Jingyo (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Heu, Sunggi (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Shim, Hyeong Kwon (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2017.05.11
  • 심사 : 2017.05.17
  • 발행 : 2017.09.30

초록

살충제와 살균제 처리가 옥수수의 독소 오염을 경감시키는데 어떤 역할을 하는지 그 효과를 관찰하였다. 데옥시니발레논(DON)과 제랄레논(ZEN)은 약제처리시 높은 경감효과를 보였으나, 아플라톡신(AFT), 오크라톡신(OTA), 푸모니신(FUM)과 티-2(T-2 toxin)은 약제처리에 의한 효과가 없었다. 약제처리는 Fusarium verticillioides, F. graminearum, 그리고 F. equiseti 같은 병원성 곰팡이의 생장을 억제하는 것으로 나타났다. 옥수수 수확 시기에 따른 곰팡이 독소의 검출량을 비교하였는데, 수확시기가 늦어질수록 DON과 ZEN의 검출량이 증가하였고, Fusarium 속의 병원균 또한 높은 함량으로 검출되었다. 옥수수 종자의 주요 영양성분은 수확 시기에 따라 영향을 받지 않는 것으로 나타났다. 본 연구결과는 옥수수의 곰팡이 오염을 줄이기 위해, 살균제와 살충제의 약제처리가 필요하며 수확시기를 늦추지 않는 것이 중요하다는 것을 밝혀냈다.

The effects of insecticide and fungicide treatment were investigated to reduce mycotoxin contamination of corn (Zea mays L.) seeds. Deoxynivalenol and zearalenone contents were reduced in the treated seeds, but aflatoxin, ochratoxin A, fumonisin, and T-2 toxin were not effective by chemical treatments. The chemical treatment did not affect the growth of saprophyte, but inhibited the pathogenic fungi such as Fusarium verticillioides, F. graminearum and F. equiseti. Myotoxin contents at different harvesting time were compared. As the harvest time was delayed, both levels of deoxynivalenol and zearalenone and frequency of Fusarium spp. increased. However, the major nutrient contents of corn seeds were not affected by harvesting period. These results show that chemical treatments are necessary to reduce the fungal contamination of corn and harvest without delay is important as well.

키워드

참고문헌

  1. Brown, R. L., Chen, Z. Y., Menkir, A. and Cleveland, T. E. 2003. Using biotechnology to enhance host resistance to aflatoxin contamination of corn. Afr. J. Biotechnol. 2: 557-562. https://doi.org/10.5897/AJB2003.000-1107
  2. Cavaglieri, L. R., Passone, A. and Etcheverry, M. G. 2004. Correlation between screening procedures to select root endophytes for biological control of Fusarium verticillioides in Zea mays L. Biol. Control 31: 259-267. https://doi.org/10.1016/j.biocontrol.2004.07.006
  3. Cleveland, T. E., Dowd, P. F., Desjardins, A. E., Bhatnagar, D. and Cotty, P. J. 2003. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag. Sci. 59: 629-642. https://doi.org/10.1002/ps.724
  4. Dowd, P. F. 2001. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J. Econ. Entomol. 94: 1067-1074. https://doi.org/10.1603/0022-0493-94.5.1067
  5. Dowd, P. F. 2003. Insect management to facilitate preharvest mycotoxin management. J. Toxicol. Toxin. Rev. 22: 327-350. https://doi.org/10.1081/TXR-120024097
  6. Jung, I. B. 2008. Studies on tolerance level and reduction of mycotoxins in feed. Pig Farm to Table 241: 52-57. (In Korean)
  7. Lee, S.-H., Son, S. W., Nam, Y. J., Shin, J. Y., Lee, S, Kim, M., Yun, J.-C., Ryu, J.-G. and Lee, T. 2010. Natural occurrence of Fusarium mycotoxins in field-collected maize and rice in Korea in 2009. Res. Plant. Dis. 16: 306-311. (In Korean) https://doi.org/10.5423/RPD.2010.16.3.306
  8. Ostry, V., Ovesna, J., Skarkova, J., Pouchova, V. and Ruprich, J. 2010. A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Mycotoxin Res. 26: 141-145. https://doi.org/10.1007/s12550-010-0056-5
  9. Suleiman, R. and Rosentrater, K. 2015. Current Maize Production, Postharvest Losses and the Risk of Mycotoxins Contamination in Tanzania. An ASABE Meeting Presentation. Paper Number: 152189434.
  10. Song, H. H., Ahn, J. H., Lin, Y. H. and Lee, C. 2006. Analysis of beauvericin and unusual enniatins co-produced by Fusarium oxysporum FB1501 (KFCC 11363P). J. Microbiol. Biotechnol. 16: 1111-1119.
  11. Yoshida, M., Nakajima, T., Arai, M., Suzuki, F. and Tomimura, K. 2008. Effect of the timing of fungicide application on fusarium head blight and mycotoxin accumulation in closed-flowering barley. Plant Dis. 92: 1164-1170. https://doi.org/10.1094/PDIS-92-8-1164
  12. Yoshida, M., Nakajima, T., Tomimura, K., Suzuki, F., Arai, M. and Miyasaka, A. 2012. Effect of the timing of fungicide application on fusarium head blight and mycotoxin contamination in wheat. Plant Dis. 96: 845-851. https://doi.org/10.1094/PDIS-10-11-0819