DOI QR코드

DOI QR Code

Removal Efficiency of Harmful Substances in Side-stream Tobacco Smoke by the Doping Components of Commercial TiO2 Photocatalysts

시판용 TiO2 광촉매의 doping 성분에 따른 비주류 담배연기의 유해물질 제거효율

  • Kim, Tae-Young (Department of Environmental Engineering, Chungbuk National University) ;
  • Cho, Yeong-Tae (Department of Environmental Engineering, Chungbuk National University) ;
  • Moon, Gi-Hak (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Jae-Yong (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2017.08.03
  • Accepted : 2017.08.17
  • Published : 2017.10.10

Abstract

Tobacco smoke emitted during smoking is divided into a main-stream and side-stream smoke. Most of the tobacco smoke that spreads to a room while smoking is a side-stream one. The side-stream tobacco smoke is two to three times more harmful than that of the main-stream tobacco smoke. In this study, the removal efficiency of CO, $H_2S$, $NH_3$ and HCHO in a side-stream tobacco smoke using the doping component of $TiO_2$ photocatalysts was confirmed. As a result, CO was removed up to 78.37%, which indicated that the $TiO_2$ photocatalytic process is effective for CO removal. Also, the removal efficiencies of CO, $H_2S$ and HCHO were greatly affected by the amount of doped O and Si components of the $TiO_2$ photocatalyst. In conclusion, the more doped O and Si components had, the higher removal efficiencies of harmful substances were achieved.

흡연으로 발생되는 담배연기는 주류 연기와 비주류 연기로 구분된다. 담배연기 중 실내로 확산되는 연기의 대부분은 비주류 연기이며, 비주류 연기의 유해물질 농도는 주류 연기의 농도보다 2~3배 높다. 본 연구에서는 $TiO_2$ 광촉매의 doping 성분에 따른 비주류 담배연기 내의 CO, $H_2S$, $NH_3$, HCHO의 제거 효율을 확인하고자 하였다. 실험 결과, CO가 최대 78.37% 제거되었으며, $TiO_2$ 광촉매 공정이 CO 제거에 효과적인 것으로 확인되었다. 또한 CO, $H_2S$, HCHO의 제거에 있어서 $TiO_2$ 광촉매에 doping된 O, Si 성분에 의해 영향을 크게 받는다. 결론적으로, doping된 O, Si 성분이 많을수록 유해물질 제거효율이 높다.

Keywords

References

  1. Ministry of Health & Welfare, 2015 National Health Statistics I, p.70-75, Disease Control Center, Korea (2016).
  2. Ministry of Strategy and Finance, Tobacco Market Trend in the First Half of 2017, Korea (2017).
  3. H. J. Shin, Biological active components in cigarette mainstream smoke, J. Korean Soc. Tob. Sci., 32(1), 41-54 (2010).
  4. T. Y. Jeon and J. Y. Kim, Characterization of fine dust collection using a filter ventilation, Appl. Chem. Eng., 26(2), 229-233 (2015). https://doi.org/10.14478/ace.2015.1022
  5. S. I. Yang, Synergistic Interaction between Particulate Matters and Environmental Tobacco Smoke Exposure on Airway Hyper-responsiveness and Mechanism, PhD Dissertation, Ulsan University, Ulsan, Korea (2015).
  6. J. M. Lim and J. H. Lee, Indoor air quality pollution of PM2.5 and associated trace elements affected by environmental tobacco smoke, J. Korean Soc. Envion. Eng., 36(5), 317-324 (2014). https://doi.org/10.4491/KSEE.2014.36.5.317
  7. K. Slezakova, M. C. Pereira, and M. C. Alvim-Ferraz, Influence of tobacco smoke on the elemental composition of indoor particles of different sizes, Atmos. Environ., 43(3), 486-493 (2009). https://doi.org/10.1016/j.atmosenv.2008.10.017
  8. US Environmental Protection Agency, Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders, EPA/600/6-90/006F, Office of Research and Development, Office of Air and Radiation, USA (1992).
  9. World Health Organization, Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, WHO/SDE/ PHE/OEH, Geneva, Switzerland (2006).
  10. J. D. Adams, K. J. O'Mara-Adams, and D. Hoffmann, Toxic and carcinogenic agents in diluted mainstream smoke and side-stream smoke of different types of cigarettes, Carcinogenesis, 8(5), 729-731 (1987). https://doi.org/10.1093/carcin/8.5.729
  11. G. H. Park, Distribution of mainstream and sidestream components of tobacco, J. Korean Soc. Tob. Sci., 12(2), 103-118 (1990).
  12. J. H. Kim, G. H. Yoon, L. Mark, J. J. Lee, J. S. Park, J. Y. Ahn, J. S. Han, and S. D. Kim, Comparison of real-time mass spectrums on the main- and side-stream smoke of cigarette using an proton transfer reaction-mass spectrometer (PTR-MS), J. Korean Soc. Urban Environ., 13(2), 117-127 (2013).
  13. X. Tang, Z. Zheng, H. S. Jung, and A. Asa-Awuku, The effects of mainstream and sidestream environmental tobacco smoke composition for enhanced condensational droplet growth by water vapor, Aerosol Sci. Technol., 46(7), 760-766 (2012). https://doi.org/10.1080/02786826.2012.663949
  14. B. C. Koo and J. S. Jeon, An electron microscopic study on the changes of rat respiratory mucosa by passive smoking, J. Korean Soc. Biomed. Lab. Sci., 6(2), 109-118 (2000).
  15. K. W. Lee, H. K. Kim, and Y. A. Oh, Association between secondhand smoke exposure and mental health in Korean adults, Korean Public Health Res., 42(3), 29-38 (2016).
  16. T. Y. Kim and J. Y. Kim, Air purification of smoking booth using photocatalytic process and air filter, Appl. Chem. Eng., 27(4), 433-438 (2016). https://doi.org/10.14478/ace.2016.1059
  17. W. Y. Choi, Studies on $TiO_2$ photocatalytic reactions, J. Korean Ind. Eng. Chem., 14(8), 1011-1022 (2003).
  18. A. Wold, Photocatalytic properties of titanium dioxide ($TiO_2$), Chem. Mater., 5(3), 280-293 (1993). https://doi.org/10.1021/cm00027a008
  19. A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 1(1), 1-21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  20. S. H. Kim, S. W. Lee, J. J. Kim, and S. O. Kim, Analytical methods of hydroxyl radical produced by $TiO_2$ photo-catalytic oxidation, J. Miner. Soc. Korea, 28(3), 245-253 (2015). https://doi.org/10.9727/jmsk.2015.28.3.245
  21. T. Y. Jeon and J. Y. Kim, Removing malodor using photocatalyst and infrared, J. Korean Soc. Environ. Eng., 36(8), 528-533 (2014). https://doi.org/10.4491/KSEE.2014.36.8.528
  22. J. H. Park, A study on Photocatalytic Degradation of Noxious Gases in Indoor Using $TiO_2$ Photocatalyst, MS Thesis, Kyonggi Univercity, Suwon, Korea (2010).