DOI QR코드

DOI QR Code

Study on Sonochemical Synthesis and Characterization of CdTe Quatum Dot

초음파 방법을 이용한 CdTe 양자점의 합성 및 특성에 관한 연구

  • 유정열 (단국대학교 자연과학대학 화학과) ;
  • 김우석 (단국대학교 자연과학대학 화학과) ;
  • 박선아 (단국대학교 자연과학대학 화학과) ;
  • 김종규 (단국대학교 자연과학대학 화학과)
  • Received : 2017.08.04
  • Accepted : 2017.08.29
  • Published : 2017.10.10

Abstract

In this study, cadmium telluride (CdTe) quantum dots were synthesized by using ultrasonic irradiation method. Optical properties and structural characteristics of the CdTe quantum dots were analyzed by two main variables; the ratio of the precursor and the synthesis time. As the synthesis time increased, the band gap reduction was observed with the growth of CdTe quantum dots. As for the luminescence properties, the red shift appeared at 510~610 nm wavelength range. Also, it was confirmed that the red shift occurs rapidly as the ratio of Te increases. According to PL peak intensity, the highest intensity was shown at 180 to 240 min. Structural characteristics of CdTe quantum dots were investigated through XRD and TEM, and the cubic zinc blend structure was observed. The size of quantum dots was about 2.5 nm and uniformly dispersed when the synthesis time took 210 min. In addition, the apparent crystallinity was discovered in FFT image.

본 연구에서는 초음파 조사법을 사용하여 cadmium telluride (CdTe) 양자점을 합성하였다. 전구체의 비율과 합성 시간을 주 변수로 하여 그에 따른 CdTe 양자점의 광학적 특성과 구조적 특성을 분석하였다. 모든 cadmium (Cd)과 tellurium(Te) 함량비율의 실험에서 합성 시간이 증가함에 따라 CdTe 양자점의 성장에 의해 밴드갭 감소현상이 관찰되었고, 발광 특성을 확인한 결과 510~610 nm 파장 범위에서 장파장으로 이동함을 보였다. 또한 Te의 비율이 증가함에 따라 장파장이동이 빠르게 일어나는 것을 확인하였다. Photoluminescence (PL) 피크 강도를 확인하였을 때 합성시간이 180 min~240 min 사이에서 가장 높은 강도를 보였다. X-ray diffraction (XRD)와 transmission electron microscopy (TEM)으로 구조적 특성을 확인한 결과 zinc blend 구조의 CdTe 양자점을 나타내었으며, 합성시간이 210 min일 때 양자점의 크기는 약 2.5 nm로 균일하게 분산되어 있었으며 fast fourier transform (FFT) 이미지를 확인한 결과 뚜렷한 결정성을 확인하였다.

Keywords

References

  1. L. E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys., 80, 4403-4409 (1984). https://doi.org/10.1063/1.447218
  2. D. P. Thomas, B. M. Walsh, and M. C. Gupta, CdSe(ZnS) nanocomposite luminescent high temperature sensor, Nanotechnology, 22, 185503-185510 (2011). https://doi.org/10.1088/0957-4484/22/18/185503
  3. Y. Q. Li, A. Rizzo, R. Cingolani, and G. Gigli, Bright white-light-emitting device from ternary nanocrystal composites, Adv. Mater., 18, 2545-2548 (2006). https://doi.org/10.1002/adma.200600181
  4. S. K. Poznyak, D. V. Talapin, E. V. Shevchenko, and H. Weller, Quantum dot chemiluminescence, Nano Lett., 4, 693-698 (2004). https://doi.org/10.1021/nl049713w
  5. L. O. Narhi, J. Schmit, K. Bechtold-Peter, and D. Sharma, Classification of protein aggregates, J. Pharm. Sci., 2, 493-498 (2012).
  6. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, 420, 800-803 (2002). https://doi.org/10.1038/nature01217
  7. B. Dubertert, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298, 1759-1762 (2002). https://doi.org/10.1126/science.1077194
  8. W. U. Huynh, X. G. Peng, and A. P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices, Adv. Mater., 11, 923-927 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
  9. C. B. murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 115, 8906-8715 (1993).
  10. N. E. Christensen, I. Groczyca, O. B. Christensen, U. Schmid, and M. Cardona, Band structure and heterojunctions of II-VI materials, J. Cryst. Growth, 101, 318-331 (1990). https://doi.org/10.1016/0022-0248(90)90989-X
  11. M. M. Moghaddam, M. Baghbanzadeh, A. Sadeghpour, O. Glatter, and C. O. Kappe, Continuous-flow synthesis of CdSe quantum dots: A size-tunable and scalable approach, J. Eur. Chem., 19, 11629-11636 (2013). https://doi.org/10.1002/chem.201301117
  12. B. J. Kumar, D. S. Kumar, and H. M. Mahesh, A facile single injection hydrothermal method for the synthesis of thiol capped CdTe quatum dots as light harvesters, J. Lumin., 178, 362-367 (2016). https://doi.org/10.1016/j.jlumin.2016.06.012
  13. Y. F. Liu and J. S. Yu, Selective synthesis of CdTe and high luminescence CdTe/CdS quatum dots: the effect of lighands, J. Colloid Interface Sci., 333, 690-698 (2009). https://doi.org/10.1016/j.jcis.2009.01.008
  14. F. O. Silva, M. S. Carvalho, R. Mendonca, W. A. Macedo, K. Balzuweit, and P. Reiss, Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots, Nanoscale Res. Lett., 7, 536-546 (2012). https://doi.org/10.1186/1556-276X-7-536
  15. P. V. Kamat, Quantum dot solar cells: Semiconductor nanocrystals as light harvesters, Science, 271, 933-937 (1996). https://doi.org/10.1126/science.271.5251.933
  16. A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 271, 933-937 (1996). https://doi.org/10.1126/science.271.5251.933
  17. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivistos, Shape control of CdSe nanocrystals, Nature, 404, 59-61 (2002).
  18. N. L. Pickett, S. Lawson, W. G. Thomas, F. G. Riddell, D. F. Foster, D. J. Cole-Hamilton, and J. R. Fryer, Gas phase formation of zinc/cadmium chalcogenide cluster complexes and their solid-state thermal decomposition to form II-VI nanoparticulate material, J. Mater. Chem., 8, 2769-2776 (1998). https://doi.org/10.1039/a806421k
  19. T. Rajh, O. I. Mieie, and A. J. Nozik, Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots, J. Phys. Chem., 79, 11999-12003 (1993).
  20. J. Hambrock, A. Birkner, and R. A. Fischer, Synthesis of CdSe nanoparticles using various organometallic cadmium precursors, J. Mater. Chem., 11, 3197-3201 (2001). https://doi.org/10.1039/b104231a
  21. H. S. Chen, B. Lo, J. Y. Hwang, G. Y. Chang, C. M. Chen, S. J. Tasi, and S. J. Wang, Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO, J. Phys. Chem. B, 108, 17119-17123 (2004). https://doi.org/10.1021/jp047035w
  22. C. Ge, M. Xu, J. Liu, J. Lei, and H. Ju, Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor, Chem. Commun., 4, 450-452 (2008).
  23. R. T. R. Ribeiro, J. J. M. M. Dias, G. a G. Pereira, D. V. Freitas, P. E. Cabral Filho, R. A. Raele, A. Fontes, M. Navarro, and B. S. Santos, Electrochemical synthetic route for preparation of CdTe quantum-dots stabilized by positively or negatively charged lighands, Green Chem., 15, 1061-1066 (2013). https://doi.org/10.1039/c3gc36990k
  24. D. Zhou, M. Lin, Z. Chen, H. Sun, H. Zhang, H. Sun, and B. Yang, Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface funtionality, Chem. Mater., 23, 4857-4862 (2011). https://doi.org/10.1021/cm202368w
  25. F. D. Menezes, A. Galembeck, and S. Alves Jr., New methodology for obtaining CdTe quantum dots by using ultrasound, Ultrason. Sonochem., 18, 1008-1011 (2011). https://doi.org/10.1016/j.ultsonch.2011.03.020
  26. D. L. Klayman and T. S. Griffin, Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules, J. Am. Chem. Soc., 95, 197-199 (1973). https://doi.org/10.1021/ja00782a034
  27. A. Gedanken, Using sonochemistry for the fabrication of nanomaterials, Ultrason. Sonochem., 11, 47-55 (2004). https://doi.org/10.1016/j.ultsonch.2004.01.037
  28. V. Saez and T. J. Mason, Sonoelectrochemical synthesis of nanoparticles, Molecules, 14, 4284-4299 (2009). https://doi.org/10.3390/molecules14104284
  29. X. F. Qiu, C. Burda, R. L. Fu, L. Pu, H. T. Chen, and J. J. Zhu, Heterostructured Bi2Se3 nanowires with periodic phase boundaries, J. Am. Chem. Soc., 126, 16276-16277 (2004). https://doi.org/10.1021/ja045556r
  30. C. Mahendiran, R. Ganesan, and A. Gedanken, Sonoelectrochemical synthesis of metallic alumium nanoparticles, Eur. J. Inorg. Chem., 14, 2050-2053 (2009).
  31. J. J. Shi, G. H. Yang, and J. J. Zhu, Sonoelectrochemical fabrication of PDDA-RGO-PdPt nanocomposites as electrocalyst for DAFCs, J. Mater. Chem., 21, 7343-7349 (2011). https://doi.org/10.1039/c1jm10333d
  32. M. Dabala, B. G. Pollet, V. Zin, E. Campadello, and T. J. Mason, Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions, J. Appl. Electrochem., 38, 395-402 (2008). https://doi.org/10.1007/s10800-007-9450-x
  33. A. L. Stroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Quantum size effect in the photonics of semiconductor nanoparticles, Theor. Exp. Chem., 41, 67-91 (2005). https://doi.org/10.1007/s11237-005-0025-9
  34. N. S. A Eom, T. S. Kim, Y. H. Choa, and S. B. Kim, Synthesis and characterzation of CdSe quantum dot with injection temperature and reaction time, J. Mater. Res., 22, 140-144 (2012).

Cited by

  1. Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes vol.32, pp.2, 2021, https://doi.org/10.14478/ace.2020.1102