DOI QR코드

DOI QR Code

Manufacturing of Monodisperse Pectin Hydrogel Microfibers Using Partial Gelation in Microfluidic Devices

미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조

  • Jin, Si Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Chaeyeon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Byungjin (Department of Chemical Engineering, Chungnam National University) ;
  • Shim, Kyu-Rak (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Dong Young (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 진시형 (충남대학교 공과대학 화학공학과) ;
  • 김채연 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 이병진 (충남대학교 공과대학 화학공학과) ;
  • 심규락 (충남대학교 공과대학 화학공학과) ;
  • 김동영 (충남대학교 공과대학 화학공학과) ;
  • 이창수 (충남대학교 공과대학 화학공학과)
  • Received : 2017.04.18
  • Accepted : 2017.04.27
  • Published : 2017.09.30

Abstract

This study introduces a method to easily fabricate highly monodisperse pectin hydrogel microfibers in a microfluidic device by using partial gelation. The hydrodynamic parameters between the pectin aqueous solution and the calcium ions containing oil solution are precisely controlled to form a stable elongation flow of the pectin aqueous solution, and partial gelation of the pectin aqueous solution is performed by the chelating of the calcium ions at the interface between the two phases. The partially gelled pectin aqueous solution is phase-separated from the oil solution in an aqueous calcium chloride solution outside the microfluidic device and is completely gelled to produce monodisperse pectin hydrogel microfibers. The thickness of the pectin hydrogel microfiber is controlled in a reproducible manner by controlling the volumetric flow rate of the initially injected pectin aqueous solution. The pectin hydrogel microfibers were 200 to 500 micrometers in diameter and had a coefficient of variation below 5% under all thickness conditions, indicating that the pectin hydrogel microfibers produced by partial gelation are highly monodisperse. In addition, biomaterials can be immobilized to the pectin hydrogel microfibers produced by a single process, demonstrating the possibility that our pectin hydrogel microfiber can be used as carriers for biomaterials or tissue engineering.

본 연구는 미세유체 장치에서 매우 균일한 펙틴 하이드로젤 미세섬유를 부분젤화법을 통해 손쉽게 제조하는 방법을 소개한다. 펙틴 수용액과 이와 섞이지 않는 칼슘이 분산된 오일용액 사이의 수력학적 변수들을 조절하여 펙틴 수용액의 흐름을 안정적으로 늘어진 유동을 형성하고 두 상의 계면에서 칼슘 이온의 킬레이트화 반응으로 펙틴 수용액을 부분젤화 시킨다. 부분젤화된 펙틴 수용액은 미세유체 장치 외부의 염화칼슘 수용액에서 오일 용액과 상분리 되고 완전히 젤화되어 미세섬유로 제조된다. 펙틴 하이드로젤 미세섬유의 굵기는 초기 주입되는 펙틴 수용액의 부피유속을 조절함으로써 재현성 있게 제어된다. 제조된 펙틴 하이드로젤 미세섬유의 직경은 200에서 500 마이크로미터 범위이며 모든 두께 조건에서 5% 이하의 변동계수를 가짐으로써 매우 균일함을 증명하였다. 또한 펙틴 하이드로젤 미세섬유에 생체물질을 단일공정으로 고정화 함으로써 생체물질 담지체나 조직공학의 지지체로써 사용될 수 있는 가능성을 보여준다.

Keywords

References

  1. Kikuchi, A., and Okano, T., "Pulsatile Drug Release Control Using Hydrogels," Adv. Drug Delivery Rev., 54(1), 53-77 (2002). https://doi.org/10.1016/S0169-409X(01)00243-5
  2. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R., "Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology," Adv. Mater., 18(11), 1345-1360 (2006). https://doi.org/10.1002/adma.200501612
  3. Lee, E., and Kim, B., "Smart Delivery System for Cosmetic Ingredients using pH-Sensitive Polymer Hydrogel Particles," Korean J. Chem. Eng., 28(6), 1347-1350 (2011). https://doi.org/10.1007/s11814-010-0509-8
  4. Shewan, H. M., and Stokes, J. R., "Review of Techniques to Manufacture Micro-Hydrogel Particles for the Food Industry and Their Applications," J. Food Eng., 119(4), 781-792 (2013). https://doi.org/10.1016/j.jfoodeng.2013.06.046
  5. Zhang, Z. P., Zhang, R. J., Tong, Q. Y., Decker, E. A., and McClements, D. J., "Food-Grade Filled Hydrogels for Oral Delivery of Lipophilic Active Ingredients: Temperature-Triggered Release Microgels," Food Res. Int., 69(1), 274-280 (2015). https://doi.org/10.1016/j.foodres.2015.01.004
  6. Zhang, Y. N., Avery, R. K., Vallmajo-Martin, Q., Assmann, A., Vegh, A., Memic, A., Olsen, B. D., Annabi, N., and Khademhosseini, A., "A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications," Adv. Funct. Mater., 25(30), 4814-4826 (2015). https://doi.org/10.1002/adfm.201501489
  7. Li, Y. L., Neoh, K. G., and Kang, E. T., "Poly (vinyl alcohol) Hydrogel Fixation on Poly(ethylene terephthalate) Surface for Biomedical Application," Polymer, 45(26), 8779-8789 (2004). https://doi.org/10.1016/j.polymer.2004.10.077
  8. Drury, J. L., and Mooney, D. J., "Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications," Biomaterials, 24(24), 4337-4351 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5
  9. Matsunaga, Y. T., Morimoto, Y., and Takeuchi, S., "Molding Cell Beads for Rapid Construction of Macroscopic 3D Tissue Architecture," Adv. Mater., 23(12), H90-H94 (2011). https://doi.org/10.1002/adma.201004375
  10. Park, K. S., Kim, C., Nam, J. O., Kang, S. M., and Lee, C. S., "Synthesis and Characterization of Thermosensitive Gelatin Hydrogel Microspheres in a Microfluidic System," Macromol. Res., 24(6), 529-536 (2016). https://doi.org/10.1007/s13233-016-4069-6
  11. Lewis, C. L., Choi, C. H., Lin, Y., Lee, C. S., and Yi, H., "Fabrication of Uniform DNA-Conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays," Anal. Chem., 82(13), 5851-5858 (2010). https://doi.org/10.1021/ac101032r
  12. Yang, C. X., Choi, C. H., Lee, C. S., and Yi, H. M., "A Facile Synthesis-Fabrication Strategy for Integration of Catalytically Active Viral-Palladium Nanostructures into Polymeric Hydrogel Microparticles via Replica Molding," ACS Nano, 7(6), 5032-5044 (2013). https://doi.org/10.1021/nn4005582
  13. He, X. H., Wang, W., Deng, K., Xie, R., Ju, X. J., Liu, Z., and Chu, L. Y., "Microfluidic Fabrication of Chitosan Microfibers with Controllable Internals from Tubular to Peapod-Like Structures," RSC Adv., 5(2), 928-936 (2015). https://doi.org/10.1039/C4RA10696B
  14. Bai, Z. H., Reyes, J. M. M., Montazami, R., and Hashemi, N., "On-Chip Development of Hydrogel Microfibers from Round to Square/Ribbon Shape," J. Mater. Chem. A, 2(14), 4878-4884 (2014). https://doi.org/10.1039/c3ta14573e
  15. Onoe, H., and Takeuchi, S., "Cell-Laden Microfibers for Bottom-up Tissue Engineering," Drug. Discovery Today, 20(2), 236-246 (2015). https://doi.org/10.1016/j.drudis.2014.10.018
  16. Choi, C. H., Yi, H., Hwang, S., Weitz, D. A., and Lee, C. S., "Microfluidic Fabrication of Complex-Shaped Microfibers by Liquid Template-Aided Multiphase Microflow," Lab Chip, 11(8), 1477-1483 (2011). https://doi.org/10.1039/c0lc00711k
  17. Choi, C. H., Jung, J. H., and Lee, C. S., "In situ Microfluidic Method for the Generation of Uniform PEG Microfiber," Korean Chem. Eng. Res., 48(4), 470-474 (2010).
  18. Jung, J. H., Choi, C. H., Chung, S., Chung, Y. M., and Lee, C. S., "Microfluidic Synthesis of a Cell Adhesive Janus Polyurethane Microfiber," Lab Chip, 9(17), 2596-2602 (2009). https://doi.org/10.1039/b901308c
  19. Burd, A., "Evaluating the Use of Hydrogel Sheet Dressings in Comprehensive Burn Wound Care," Ostomy Wound Manag., 53(3), 52-62 (2007).
  20. Leng, L., McAllister, A., Zhang, B. Y., Radisic, M., and Gunther, A., "Mosaic Hydrogels: One-Step Formation of Multiscale Soft Materials," Adv. Mater., 24(27), 3650-3658 (2012). https://doi.org/10.1002/adma.201201442
  21. Rattanaruengsrikul, V., Pimpha, N., and Supaphol, P., "In vitro Efficacy and Toxicology Evaluation of Silver Nanoparticle-Loaded Gelatin Hydrogel Pads as Antibacterial Wound Dressings," J. Appl. Polym. Sci., 124(2), 1668-1682 (2012). https://doi.org/10.1002/app.35195
  22. Paquet, P., Pierard-Franchimont, C., Pierard, G. E., and Quatresooz, P., "Skin Fungal Biocontamination and the Skin Hydrogel Pad Test," Arch. Dermatol. Res., 300(4), 167-171 (2008). https://doi.org/10.1007/s00403-007-0822-1
  23. Lim, D., Lee, E., Kim, H., Park, S., Baek, S., and Yoon, J., "Multi Stimuli-Responsive Hydrogel Microfibers Containing Magnetite Nanoparticles Prepared Using Microcapillary Devices," Soft Matter, 11(8), 1606-1613 (2015). https://doi.org/10.1039/C4SM02564D
  24. Heo, Y. J., Shibata, H., Okitsu, T., Kawanishi, T., and Takeuchi, S., "Long-Term in vivo Glucose Monitoring Using Fluorescent Hydrogel Fibers," Proc. Natl. Acad. Sci. USA, 108(33), 13399-13403 (2011). https://doi.org/10.1073/pnas.1104954108
  25. Ahmed, E. M., "Hydrogel: Preparation, Characterization, and Applications: A review," J. Adv. Res., 6(2), 105-121 (2015). https://doi.org/10.1016/j.jare.2013.07.006
  26. Kim, C., Park, K. S., Kang, S. M., Kim, J., Song, Y., and Lee, C. S., "Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device," Korean Chem. Eng. Res., 53(6), 740-745 (2015). https://doi.org/10.9713/kcer.2015.53.6.740
  27. Choi, C. H., Jung, J. H., Rhee, Y. W., Kim, D. P., Shim, S. E., and Lee, C. S., "Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device," Biomed. Microdevices, 9(6), 855-862 (2007). https://doi.org/10.1007/s10544-007-9098-7
  28. Song, Y., and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52(5), 632-637 (2014). https://doi.org/10.9713/kcer.2014.52.5.632
  29. Kim, C., Park, K. S., Kim, J., Jeong, S. G., and Lee, C. S., "Microfluidic Synthesis of Monodisperse Pectin Hydrogel Microspheres Based on in situ Gelation and Settling Collection," J. Chem. Technol. Biotechnol., 92(1), 201-209 (2017). https://doi.org/10.1002/jctb.4991
  30. Cheng, Y. H., Yang, S. H., Su, W. Y., Chen, Y. C., Yang, K. C., Cheng, W. T. K., Wu, S. C., and Lin, F. H., "Thermosensitive Chitosan-Gelatin-Glycerol Phosphate Hydrogels as a Cell carrier for Nucleus Pulposus Regeneration: An in vitro Study," Tissue Eng. Part A, 16(2), 695-703 (2010). https://doi.org/10.1089/ten.tea.2009.0229
  31. Hosseini, Y., Agah, M., and Verbridge, S. S., "Endothelial Cell Sensing, Restructuring, and Invasion in Collagen Hydrogel Structures," Integr. Biol., 7(11), 1432-1441 (2015). https://doi.org/10.1039/C5IB00207A
  32. Chicatun, F., Muja, N., Serpooshan, V., Quinn, T. M., and Nazhat, S. N., "Effect of Chitosan Incorporation on the Consolidation Process of Highly Hydrated Collagen Hydrogel Scaffolds," Soft Matter, 9(45), 10811-10821 (2013). https://doi.org/10.1039/c3sm52176a
  33. Lin, C. C., and Anseth, K. S., "PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine," Pharm. Res., 26(3), 631-643 (2009). https://doi.org/10.1007/s11095-008-9801-2
  34. Kozlovskaya, V., Kharlampieva, E., Mansfield, M. L., and Sukhishvili, S. A., "Poly(methacrylic acid) Hydrogel Films and Capsules: Response to pH and Ionic Strength, and Encapsulation of Macromolecules," Chem. Mater., 18(2), 328-336 (2006). https://doi.org/10.1021/cm0517364
  35. Brazel, C. S., and Peppas, N. A., "Synthesis and Characterization of Thermomechanically and Chemomechanically Responsive Poly(n-isopropylacrylamide-co-methacrylic acid) Hydrogels," Macromolecules, 28(24), 8016-8020 (1995). https://doi.org/10.1021/ma00128a007
  36. Nagaoka, N., Safranj, A., Yoshida, M., Omichi, H., Kubota, H., and Katakai, R., "Synthesis of Poly(n-isopropylacrylamide) Hydrogels by Radiation Polymerization and Cross-Linking," Macromolecules, 26(26), 7386-7388 (1993). https://doi.org/10.1021/ma00078a046
  37. Zhang, X. Z., and Chu, C. C., "Preparation of Thermosensitive PNIPAAm Hydrogels with Superfast Response," Chem. Commun., 0(3), 350-351 (2004).
  38. Neves, S. C., Gomes, D. B., Sousa, A., Bidarra, S. J., Petrini, P., Moroni, L., Barrias, C. C., and Granja, P. L., "Biofunctionalized Pectin Hydrogels as 3D Cellular Microenvironments," J. Mater. Chem. B, 3(10), 2096-2108 (2015). https://doi.org/10.1039/C4TB00885E
  39. Ninan, N., Muthiah, M., Park, I. K., Elain, A., Thomas, S., and Grohens, Y., "Pectin/Carboxymethyl Cellulose/Microfibrillated Cellulose Composite Scaffolds for Tissue Engineering," Carbohydr. Polym., 98(1), 877-885 (2013). https://doi.org/10.1016/j.carbpol.2013.06.067
  40. Munarin, F., Tanzi, M. C., and Petrini, P., "Advances in Biomedical Applications of Pectin Gels," Int. J. Biol. Macromol., 51(4), 681-689 (2012). https://doi.org/10.1016/j.ijbiomac.2012.07.002
  41. Katav, T., Liu, L., Traitel, T., Goldbart, R., Wolfson, M., and Kost, J., "Modified Pectin-Based Carrier for Gene Delivery: Cellular Barriers in Gene Delivery Course," J. Controlled Release, 130(2), 183-191 (2008). https://doi.org/10.1016/j.jconrel.2008.06.002
  42. Eliaz, I., Weil, E., and Wilk, B., "Integrative Medicine and the Role of Modified Citrus Pectin/Alginates in Heavy Metal Chelation and Detoxification - Five Case Reports," Forsch. Komplementmed., 14(6), 358-364 (2007). https://doi.org/10.1159/000109829
  43. Hochmuth, R. M., "Micropipette Aspiration of Living Cells," J. Biomech., 33(1), 15-22 (2000). https://doi.org/10.1016/S0021-9290(99)00175-X
  44. Boyd, D. A., Adams, A. A., Daniele, M. A., and Ligler, F. S., "Microfluidic Fabrication of Polymeric and Biohybrid Fibers with Predesigned Size and Shape," J. Visualized Exp., (83), e50958 (2014).
  45. Peran, M., Garcia, M. A., Lopez-Ruiz, E., Jimenez, G., and Marchal, J. A., "How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration," Materials, 6(4), 1333-1359 (2013). https://doi.org/10.3390/ma6041333
  46. Chen, Z. T., Ni, S. Y., Han, S. W., Crawford, R., Lu, S., Wei, F., Chang, J., Wu, C. T., and Xiao, Y., "Nanoporous Microstructures Mediate Osteogenesis by Modulating the Osteo-Immune Response of Macrophages," Nanoscale, 9(2), 706-718 (2017). https://doi.org/10.1039/C6NR06421C
  47. Schindler, M., and Ajdari, A., "Droplet Traffic in Microfluidic Networks: A Simple Model for Understanding and Designing," Phys. Rev. Lett., 100(4), (2008).
  48. Nisisako, T., and Torii, T., "Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles," Adv. Mater., 19(11), 1489-1493 (2007). https://doi.org/10.1002/adma.200700272
  49. Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C., and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors," J. Am. Chem. Soc., 127(22), 8058-8063 (2005). https://doi.org/10.1021/ja042494w
  50. Xu, X. L., and Asher, S. A., "Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals," J. Am. Chem. Soc., 126(25), 7940-7945 (2004). https://doi.org/10.1021/ja049453k