DOI QR코드

DOI QR Code

Application for Uni-materialization and Life Cycle Assessment of the Vehicle Undercover

자동차 언더커버의 유니소재화 적용 및 전과정평가

  • Yun, Hyeri (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office) ;
  • Park, Yoosung (H. I. Pathway Co., LTD.) ;
  • Yu, MiJin (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office) ;
  • Bae, Hana (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office) ;
  • Lee, Hanwoong (Korea Institute of Industrial Technology, Environmental Regulation Compliance Office)
  • 윤혜리 (한국생산기술연구원 환경규제대응실) ;
  • 박유성 ((주)에이치아이피) ;
  • 유미진 (한국생산기술연구원 환경규제대응실) ;
  • 배하나 (한국생산기술연구원 환경규제대응실) ;
  • 이한웅 (한국생산기술연구원 환경규제대응실)
  • Received : 2016.10.28
  • Accepted : 2017.03.27
  • Published : 2017.09.30

Abstract

In response to national and international regulations for resource circulation and to reduce greenhouse gas emissions, the automotive industry has tried to reuse scrap parts and defective products produced in the disposal or production stages as recycled resources. Attempts have been made to reach the target recycling rate by reducing the number of material types required for each part. Moreover, in order to achieve greenhouse gas reduction targets while maintaining the performance of existing products, lighter components are being developed. Existing products were 100% incinerated at the disposal stage, but the uni-materialized products were improved to be possible that it could be recycled 90% through scraps and the defective product in the pre-production and production stage. It also appears that the fuel efficiency improves through 56% lightweight compared to the existing product. In this paper, a preliminary assessment is conducted on the applicability of uni-materialized product development of car parts. The environmental impact values of existing products and developed prototypes are compared and analyzed through life cycle assessment.

국내외 자원순환규제 대응 및 온실가스 저감을 위해 자동차산업에서는 부품의 소재 종류의 수를 줄여 재활용률 목표치를 달성하고, 폐기단계 또는 제조단계에서 발생하는 불량 및 스크랩을 순환자원으로 재활용하는 노력을 하고 있다. 또한 기존 제품의 성능은 유지하면서 온실가스 저감 목표치를 달성하기 위해 부품 경량화를 추진하고 있다. 기존제품의 폐기단계에서 100% 소각을 하던 제품을 개선제품에서는 제조전단계와 제조단계에서 발생하는 스크랩, 불량을 수거하여 90%의 재활용이 가능하도록 개선했다. 또한 기존제품 대비 56% 경량화를 통해 연비 개선효과를 나타냈다. 본 연구에서는 자동차 언더커버를 대상으로 유니소재화 제품 개발 적용가능성에 대한 사전평가를 실시하고, 개발된 시제품의 전과정평가를 통해 기존제품과 개발된 시제품의 환경영향값을 비교, 분석하고자 한다.

Keywords

References

  1. KS I 7003:2015, "Environmental Management - Uni-materialization - Definition and General Principles," Korean Agency for Technology and Standards (2015).
  2. http://www.kncpc.or.kr/clean/material.asp.
  3. KITECH., "Guideline for Assessment of Uni-materialized Product," (2013).
  4. Ju, H. S., Yun, H. R., Yeon, S. M., and Ko, K. T., "Case Study on the Target Products for Applicable Uni-materialization," Clean Technol., 19(2), 173-183 (2013). https://doi.org/10.7464/ksct.2013.19.2.173
  5. Chang, D., Lee, C. K. M., and Chen, C. H., "Review of Life Cycle Assessment Towards Sustainable Product Development," Clean Technol., 83, 48-60 (2014).
  6. ISO 14040: Environmental Management-Life Cycle Assessment-Principles and Framwork, ISO, Italy (1997).
  7. Ramani, K., Ramanujan, D., Bernstein, W. Z., Zhao, F., Sutherland, J., Handwerker, C., Choi, J. K., Kim, H., and Thurston, D., "Integrated Sustainable Life Cycle Design: A Review," J. Mech. Des., 132(9), 091004 (2010). https://doi.org/10.1115/1.4002308
  8. Leroy, Y., Cluzel, F., Zaraket, T., Lasvaux, S., and Bentos, M., "Integrating LCA-based Models into Design Process for Buildings: a Study of the Existing Practices in France," The 6th International Conference on Life Cycle Management in Gothenburg (2013).
  9. Gregory, A. K., "The Application of Life Cycle Assessment to Design," J. Clean. Prod., 1, 3-4 (1993). https://doi.org/10.1016/0959-6526(93)90027-9
  10. Fulvio, A., and Fabrice, M., "Integration of Resource Efficiency and Waste Management Criteria in European Product Policies-Second Phase, European Union (2012).
  11. Shailendra, M., Benoit, T., Alvaro, D. P. T., Thibault, F., Karsten, S., Marina, P., Justus, V. G., and Jens, T., "Materialefficiency Ecodesign Report and Module to the Methodology for the Ecodesgin of Energy- related Products (MEErP)" part 1, EC-DG Enterprise and Industry (2013).
  12. Guideline for Technology Value assessment, Ministry of Trade, Industry and Energy (2014).
  13. Emission Factors for Air Pollutants, National Institute of Environmental Research, ISBN: 978-89-6558-278-6 (2015).
  14. Annual Energy Review 2000, Energy Information Administration (2001).
  15. Annual Energy Review 2002, Energy Information Administration (2003).
  16. Minerals Year Book 2001, U.S. Geological Survey (2001).
  17. Minerals Year Book 2001, U.S. Geological Survey (2002).
  18. Climate Change 2013: The Physical Science Basis, Intergovernmental Panel on Climate Change (2016).
  19. Scientific Assessment of Ozone Depletion: 2001, United Nations Environment Programme (2002).
  20. Heijungs, R., Guinee, J. B., Huppes, G., Lankreijer, R. M., Udo de Haes, H. A., Wegener Sleeswijk, A., Ansems, A. M. M., Eggels, P. G., Duin, R. van, and Goede, H. P. de, "Environmental Life Cycle Assessment of Products: Guide and Backgrounds," CML, Leiden University, Leiden
  21. Hauschild, M. Z., and Wenzel, H., "Environmental Assessment of Products" Springer (1998).
  22. Jenkin, M. E., and Hayman, G. D., "Photochemical Ozone Creation Potentials for Oxygenated Volatile Organic Compounds: Sensitivity to Variations in Kinetic and Mechanistic Parameters," Atmos. Environ., 33(8), 1275-1293 (1999). https://doi.org/10.1016/S1352-2310(98)00261-1
  23. Derwenta, R. G., Jenkina, M. E., Saundersa, S. M., and Pillinga, M. J., "Photochemical Ozone Creation Potentials for Organic Compounds in Northwest Europe Calculated with a Master Chemical Mechanism," Atmos. Environ., 32(14-15), 2429-2441 (1998). https://doi.org/10.1016/S1352-2310(98)00053-3