DOI QR코드

DOI QR Code

국내 옥수수 재배적지 예측을 위한 R 기반의 기후적합도 모델 병렬화

R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea

  • 현신우 (서울대학교 식물생산과학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University)
  • 투고 : 2017.08.08
  • 심사 : 2017.09.22
  • 발행 : 2017.09.30

초록

기후변화에 대응하기 위해 다양한 작부체계 구축이 시도될 수 있다. 변화하는 기후조건에서 작물들이 최적의 재배지에 배치될 수 있도록 기후적합도를 평가하는 것이 중요하다. EcoCrop 모델과 같은 월별 기후자료를 사용하여 여러 작물의 재배적합도들 계산하는 모델을 사용할 경우, 고해상도의 전자기후도를 사용하여 우리나라의 복잡한 지형을 고려한 재배 적합도 계산이 가능하다. 그러나, 방대한 기후자료의 처리를 위해 여러 전산자원들을 동시에 사용할 수 있는 병렬처리 기술 개발이 선행되어야 한다. 본 연구에서는 공개용 통계분석 도구인 R을 기반으로 EcoCrop 모델을 병렬로 구동할 수 있는 스크립트를 개발하고, 이를 격자형 기후자료에 적용하여 옥수수의 재배적지를 예측하였다. 병렬 처리를 시도한 결과 CPU 코어 개수 증가에 따른 처리 시간 단축이 선형적으로 이루어지지는 않았으나 처리시간의 상당부분을 단축할 수 있었다. 예를 들어 16개의 CPU를 사용하였을 때 이상적인 시간보다 1.5배가 넘는 시간이 소모되었으나 총 시간이 90%정도 단축되었다. 이러한 기술들을 작물 생육 모델들이 개발되지 않은 작물들에 적용할 경우, 기후변화 조건에 적응할 수 있는 작부체계 설계를 지원할 수 있을 것이다. 또한, 본 연구에서 사용한 기술들은 CPU 코어가 많은 워크스테이션에서 작동이 가능하나, 여러 컴퓨터를 연결한 중형 컴퓨터에 사용할 수 있는 MPI 기술을 적용할 수 있는 기술개발이 필요할 것이다.

Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.

키워드

참고문헌

  1. Boote, K. J., J. W. Jones, and G. Hoogenboom, 1998: Simulation of crop growth: CROPGRO model.
  2. Challinor, A.J., J. Watson, D.B. Lobell, S.M. Howden, D.R. Smith, and N. Chhetri, 2014: A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change 4(4), 287. https://doi.org/10.1038/nclimate2153
  3. Ecocrop, 2016: http://ecocrop.fao.org (2016. 9. 7)
  4. Github, 2016: https://github.com/CIAT-DAPA/dapa-climate-change/blob/master/EcoCrop/src/EcoCrop.R (2016. 9. 7)
  5. Griffin, T. S., B. S. Johnson, and J. T. Ritchie, 1993: A simulation model for potato growth and development: Substor-potato Version 2.0. Michigan State University, Department of Crop and Soil Sciences.
  6. Hijmans, R.J., L. Guarino, M. Cruz, and E. Rojas, 2001: Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 15-19.
  7. Hijmans, R. J., and C. H. Graham, 2006: The ability of climate envelope models to predict the effect of climate change on species distributions. Global change biology 12(12), 2272-2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x
  8. Hijmans, R. J., 2016: raster: Geographic Data Analysis and Modeling. R package version 2.5-8, https://CRAN.R-project.org/package=raster
  9. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European journal of agronomy 18(3), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  10. Jones, P. G., and P. K. Thornton, 2003: The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global environmental change 13(1), 51-59. https://doi.org/10.1016/S0959-3780(02)00090-0
  11. Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP 8.5 climate change scenarios. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.3.132
  12. Kim, H., S. Hyun, and K. S. Kim, 2014: A study on the prediction of suitability change of forage crop Italian Ryegrass (Lolium multiflorum L.) using spatial distribution model. Korean Journal of Agricultural and Forest Meteorology 16(2), 103-113. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.2.103
  13. Kim, J., C. K. Lee, H. Kim, B. W. Lee, and K. S. Kim, 2015: Requirement analysis of a system to predict crop yield under climate change. Korean Journal of Agricultural and Forest Meteorology 17(1), 1-14. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.1.1
  14. Kim, M.J., S. Seo, K.C. Choi, J.G. Kim, S.H. Lee, J.S. Jung, S.H. Yoon, H.C. Ji, and M.H. Kim, 2013: The studies on growth characteristics and dry matter yield of hybrid corn varieties in Daegwallyeong region. Journal of The Korean Society of Grassland and Forage Science 33(2), 123-130. https://doi.org/10.5333/KGFS.2013.33.2.123
  15. KMA, 2016: Climate Information Portal. http://climate.go.kr (2016. 9. 7)
  16. Kobal, M., A. Ceglar, K. Eler, B. Medved-Cvikl, L. Honzak, P. Simoncic, and D. Hladnik, 2013: On the use of R programming language in the analyses of spatial data. Acta Silvae et Ligni 102, 55-62.
  17. Lee, C. K., J. Kim, J. Shon, W. H. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.4.207
  18. Lee, K. J., S. Lee, B. W. Lee, and K. S. Kim, 2013: Implementation of GrADS and R Scripts for Processing Future Climate Data to Produce Agricultural Climate Information. Atmosphere, 23(2), 237-243. (in Korean with English abstract) https://doi.org/10.14191/Atmos.2013.23.2.237
  19. Ludwig, F., and S. Asseng, 2006: Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems 90(1), 159-179. https://doi.org/10.1016/j.agsy.2005.12.002
  20. Ramirez-Villegas, J., A. Jarvis, and P. Laderach, 2013: Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agricultural and Forest Meteorology 170, 67-78. https://doi.org/10.1016/j.agrformet.2011.09.005
  21. RDA, 2016: Digital Agro-Climate Map Database for Impact Assessment of Climate Change on Agriculture System. http://www.agdcm.kr (2016. 9. 7)
  22. RDA, 2016: Korean Soil Information System. http://soil.rda.go.kr (2016. 9. 7)
  23. Revolution Analytics and S., Weston, 2015a: doSNOW: Foreach Parallel Adaptor for the 'snow' Package. R package version 1.0.14, https://CRAN.R-project.org/package=doSNOW
  24. Revolution Analytics and S., Weston, 2015b: foreach: Provides Foreach Looping Construct for R. R package version 1.4.3, https://CRAN.R-project.org/package=foreach
  25. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131. (in Korean with English abstract)
  26. Song, Y., W.K. Lee, H. Kwak, M. Kim, and S.R. Yang, 2013: Vulnerability Assessment of Maize and Wheat Production to Temperature Change - In Case of USA and China -. Journal of Climate Change Research 4(4), 371-384.
  27. Tierney, L., A. J. Rossini, and N. Li, 2009: Snow: A parallel computing framework for the R system. International Journal of Parallel Programming 37(1), 78-90. https://doi.org/10.1007/s10766-008-0077-2
  28. Tierney, L., A. J. Rossini, N. Li, and H. Sevcikova, 2016: snow: Simple Network of Workstations. R package version 0.4-2, https://CRAN.R-project.org/package=snow
  29. Yamori, W., K. Hikosaka, and D.A. Way, 2014: Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis research 119(1-2), 101-117. https://doi.org/10.1007/s11120-013-9874-6
  30. Yoo, B. H. and K. S., Kim, 2017: Development of a gridded climate data tool for the COordinated Regional climate Downscaling EXperiment data. Computers and Electronics in Agriculture 133, 128-140. https://doi.org/10.1016/j.compag.2016.12.001