DOI QR코드

DOI QR Code

Material Decomposition through Weighted Image Subtraction in Dual-energy Spectral Mammography with an Energy-resolved Photon-counting Detector using Monte Carlo Simulation

몬테카를로 시뮬레이션을 이용한 광자계수검출기 기반 이중에너지 스펙트럼 유방촬영에서 가중 영상 감산법을 통한 물질분리

  • Eom, Jisoo (Department of Medical Science, Konyang University) ;
  • Kang, Sooncheol (Department of Medical Science, Konyang University) ;
  • Lee, Seungwan (Department of Medical Science, Konyang University)
  • Received : 2017.05.17
  • Accepted : 2017.09.13
  • Published : 2017.09.30

Abstract

Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

유방촬영술은 유방암의 조기검진을 위해 시행되는 대표적인 검사이다. 하지만 유방 구성물질의 물리적 특성에 의존하는 유방촬영상은 병변의 악성 또는 양성 여부에 대한 정보 제공이 불가능하다. 이중에너지 영상 감산법을 시행하는 경우 유방촬영상에서 특정 물질에 대한 정보를 추출할 수 있지만 피폭선량을 증가시킬 뿐만 아니라 물질분리의 정확도를 감소시키는 단점이 있다. 본 연구에서는 물질의 선감약계수를 적용한 유방팬텀을 모사하여 광자계수검출기 기반 이중에너지 유방촬영에서 특정 물질에 대한 가중함수를 적용하여 분리의 정확도를 향상시킬 수 있는 기술을 제안하였다. 그리고 유방팬텀영상으로부터 물질분리의 정확도를 평가하기 위해 대조도 및 잡음 특성을 분석하였다. 분석 결과 이중에너지 가중 영상 감산법의 악성종양에 대한 대조도는 일반적인 유방촬영과 이중에너지 영상 감산법에 비해 각각 0.98, 1.06배로 큰 차이가 없다. 그렇지만 이중에너지 가중 영상 감산법 적용 시 양성종양에 대한 대조도가 0에 근사하기 때문에 양성종양에 대한 악성종양의 상대적인 대조도가 13.54배로 크게 향상된 것으로 확인되었다. 따라서 본 연구에서 제안하는 이중에너지 가중 영상 감산법은 유방촬영 진단의 정확도 향상에 기여할 수 있을 것이다.

Keywords

References

  1. Cancer Facts and Figures 2016, American Cancer Society, 2016.
  2. Leschka, S., Stolzmann, P., Schmid, F. T., et al.., "Low Kilovoltage Cardiac Dual-source CT: Attenuation, Noise, and Radiation Dose," European Society of Radiology, Vol. 18, No. 9,, pp. 1809-1817, 2008. https://doi.org/10.1007/s00330-008-0966-1
  3. Kuhlman, J. E., Collins, J., Brooks, G. N., et al., "Dual-Energy Subtraction Chest Radiography: What to Look for beyond Calcified Nodules," Radiological Society of North America, Vol. 26, No. 1, pp. 79-92, 2006.
  4. Takahashi, T., & Watanabe, S., "Recent Progress in CdTe and CdZnTe Detectors," IEEE Transactions on Nuclear Science, Vol. 48, No. 4, pp. 950-959, 2001. https://doi.org/10.1109/23.958705
  5. Laidevant, A. D., Malkov, S., Flowers, C. I., et al., "Compositional Breast Imaging using a Dual-energy Mammography Protocol," Medical Physics, Vol. 37, No. 1, pp. 161-174, 2010.
  6. Choi, Y. N., Cho, H. M., Lee, S. W., et al., "Material Decomposition in Contrast-enhanced Digital Mammography Based on Photon Counting: Monte Carlo Simulation Studies," Korean Physical Society, Vol. 59, No.1, pp. 161-168, 2011. https://doi.org/10.3938/jkps.59.161
  7. Miyajima, S., & Imagawa, K., "CdZnTe Detector in Mammography X-ray Spectroscopy," Physics in Medicine and Biology, Vol. 47, No. 22, pp. 3595-3972, 2002.
  8. Barber, W. C., Nygard, E., Lwanczyk, J. S., et al., "Characterization of a Novel Photon Counting Detector for Clinical CT: Count Rate, Energy Resolution, and Noise Performance," Journal of Medical Imaging, Vol. 7258, pp. 725824, 2009.
  9. Koutalonis, M., Delis, H., Spyrou, G., et al., "Contst-to-noise Ratio in Magnification Mammography: A Monte Carlo Study," Physics in Medicine and Biology, Vol. 52, No. 11, pp. 3185-3199, 2007. https://doi.org/10.1088/0031-9155/52/11/017
  10. Cameron, J. R., & Sorenson, J., "Measurement of Bone Mineral in Vivo: and improved method," Science, Vol. 142, No. 3589, pp. 230-232, 1963. https://doi.org/10.1126/science.142.3589.230
  11. Jan, S., Benoit, D., Becheva, E., et al., "GATE V6: Major Enhancement of the GATE simulation Platform Enabling Modelling of CT and Radiotherapy," Physics in Medicine and Biology, Vol. 56, No. 4, pp. 881-901, 2011. https://doi.org/10.1088/0031-9155/56/4/001
  12. Castronovo, V., & Bellahcene, A., "Evidence that Breast Cancer Associated Microcalcifications are Mineralized Malignant Cells," Internation Journal of Oncology, Vol. 12, No. 2, pp. 305-313, 1998.
  13. Winston, J. S., Yeh, I. T., Evers, K., et al., "Calcium Oxalate is Associated with Benign Breast Tissue: Can We Avoid Biopsy?," American Journal of Clinical Pathology, Vol. 100, No. 5, pp. 488-492, 1993. https://doi.org/10.1093/ajcp/100.5.488
  14. Carney, K., Gilmore, B. J., Fogarty, G. W. A., et al., "Catalogue of Diagnostic X-ray Spectra and Other Data: Report No 78," Institute of Physics and Engineering in Medicine, 1997.
  15. Pietrobelli, A., Formica, C., Wang, Z., et al., "Dual-energy X-ray Absorptiometry Body Composition Model: Review of Physical Concepts," American Journal of Physiology, Vol. 271, No. 6, pp. E941-E951, 1996.
  16. Cho M. H., Barber, W. C., Ding, H., et al., "Characteristic Performance Evaluation of a Photon Counting Si Strip Detector for Low Dose Spectral Breast CT Imaging, Medical Physics," Vol. 41, No. 9, pp. 091903(1-10), 2014. https://doi.org/10.1118/1.4892174
  17. Edelstein, W. A., Bottomley, P. A., Hart, H. R., et al., "Signal Noise and Contrast in Nuclear Magnetic Resonance (NMR) Imaging," Journal of Computer Assistered Tomography, Vol. 7, No. 3, pp.391-401, 1983. https://doi.org/10.1097/00004728-198306000-00001
  18. Desai, N., Singh, A., & Valentino, D. J., "Practical Evaluation of Image Quality in Computed Radiographic (CR) Imaging Systems," Journal of Medical Imaging, Vol. 7622, pp. 76224Q(1-10), 2010.
  19. Gardner, M. J., & Altman, D. G., "Confidence Intervals rather than P Value: Estimation rather than Hypothesis Testing," Bristish Medical Journal, Vol. 292, No. 746, pp. 746-750, 1986. https://doi.org/10.1136/bmj.292.6522.746
  20. Lee, S. W., Choi, Y. N., Cho, H. M., et al., "A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector," Physics in Medicine and Biology, Vol. 5, No. 15, pp. 4931-4949, 2012.
  21. Taguchi, K., & Iwanczyk, J. S., "version20/20: Single Photon Counting X-ray Detectors in Medical Imaging," Medical Physics, Vol. 40, No. 40, pp. 100901(1-19), 2013. https://doi.org/10.1118/1.4820371