DOI QR코드

DOI QR Code

Investigations of Temperature Effect on the Conduction Mechanism of Electrical Conductivity of Copolymer/Carbon Black Composite

  • El Hasnaoui, M. (LASTID Laboratory, Physics Department, Faculty of Sciences, Ibn-Tofail University) ;
  • Kreit, L. (LASTID Laboratory, Physics Department, Faculty of Sciences, Ibn-Tofail University) ;
  • Costa, L.C. (I3N and Physics Department, University of Aveiro) ;
  • Achour, M.E. (LASTID Laboratory, Physics Department, Faculty of Sciences, Ibn-Tofail University)
  • Received : 2017.07.30
  • Accepted : 2017.08.11
  • Published : 2017.09.30

Abstract

This study deals the prediction of temperature effect on low-frequency dispersion of alternating current (AC) conductivity spectra of composite materials based on copolymer reinforced with carbon black (CB) particles. A sample of ethylene butylacrylate loaded with 13% of CB particles were prepared and investigated using the impedance spectroscopy representation in the frequency range from 40 Hz to 0.1 MHz and temperature range from $20^{\circ}C$ to $125^{\circ}C$. The dielectric constant, ${\varepsilon}^{\prime}$, and dielectric losses, ${\varepsilon}^{{\prime}{\prime}}$, were found to decrease with increasing frequency. The frequency dependence of the AC conductivity follows the universal power law with a large deviation in the high frequency region, the positive temperature coefficient in resistivity effect has been observed below the melting temperature which makes this composite potentially remarkable for industrial applications.

Keywords

References

  1. Abazine K, Anakiou H, El Hasnaoui M, Grac M P F, Fonseca M A, Costa L C, Achour M E, and Oueriagli A (2016) Electrical conductivity of multiwalled carbon nanotubes/polyester polymer nanocomposite. J. Compos. Mater. 50, 3283-3290. https://doi.org/10.1177/0021998315618249
  2. Aziz S B and Abidin Z H Z (2014) Electrical and morphological analysis of chitosan: AgTf solid electrolyte. Mater. Chem. Phys. 144, 280-286. https://doi.org/10.1016/j.matchemphys.2013.12.029
  3. Blom P W M, Schoo H F M, and Matters M (1998) Electrical characterization of electroluminescent polymer/nanoparticles composite devices. Appl. Phys. Lett. 73, 3914-3916. https://doi.org/10.1063/1.122934
  4. Bouknaitir I, Aribou N, Elhad Kassim S A, El Hasnaoui M, Melo B M G, Achour M E, and Costa L C (2017) Electrical properties of conducting polymer composites: Experimental and modeling approaches. Spectro. Lett. 50, 196-199. https://doi.org/10.1080/00387010.2017.1282522
  5. Costa M M, Pires G F M, Terezo A J, Graca M P F, and Sombra A S B (2011) Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J. Appl. Phys. 110, 034107. https://doi.org/10.1063/1.3615935
  6. Dyre J C (1988) The random free energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 64, 2456-2468. https://doi.org/10.1063/1.341681
  7. El Hasnaoui M, Triki A, Achour M E, and Arous M (2014) Modelling of dielectric relaxation processes of epoxy-resin filled with carbon black particles. Physica B 433, 62-66. https://doi.org/10.1016/j.physb.2013.10.009
  8. Elliot S R (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. J. Adv. Phys. 36, 135-217. https://doi.org/10.1080/00018738700101971
  9. El-Nahass M M, Farid A M, and Atta A A (2016). AC conductivity and dielectric relaxation of bulk tris. (8-hydroxyquinoline) aluminum organic semiconductor. Opt. Quant. Electron. 48, 458. https://doi.org/10.1007/s11082-016-0724-6
  10. He D, Li Y, Wang J, Yang Y, and An Q (2016) Tunable nanostructure of TiO2/reduced graphene oxide composite for high photocatalysis. Appl. Microsc. 46, 37-44. https://doi.org/10.9729/AM.2016.46.1.37
  11. Jonscher A K (1983) Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London).
  12. Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, and Blau W J (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymercarbon nanotube composite thin films. J. Appl. Phys. 92, 4024-4030. https://doi.org/10.1063/1.1506397
  13. Kimura T and Kajiwara M (1998) Electrical properties of poly(nbutylamino) (di-allylamino) phosphazene. J. Mater. Sci. 33, 2955-2959. https://doi.org/10.1023/A:1004354713896
  14. Macutkevic J, Kuzhir P, Paddubskaya A, Makimono S, Banys J, Celzard A, Fierro V, Bistarelli S, Cataldo A, Micciulla F, and Bellucci S (2013) Electrical transport in carbon black-epoxy resin composites at different temperatures. J. Appl. Phys. 114, 033707. https://doi.org/10.1063/1.4815870
  15. Mdarhri A, Brosseau C, and Carmona F (2007) Microwave dielectric properties of carbon black filled polymers under uniaxial tension. J. Appl. Phys. 101, 084111. https://doi.org/10.1063/1.2718867
  16. Mohamed A, Miane J L, and Zangar H (2001) Radiofrequency and microwave (10kHz-8GHz) electrical properties of polypyrrole and polypyrrole-poly(methyl methacrylate) composites. Polym. Int. 50, 773-777. https://doi.org/10.1002/pi.686
  17. Nigrawal A and Chand N (2013) Electrical and dynamic mechanical analysis of nano alumina addition on polyvinyl alcohol (Pva) composites. Prog. Nanotechnol. Nanomater. 2, 25-33.
  18. Ouewsleti A, Hilel F, Guidara K, and Gargouri M (2010) AC conductivity analysis and dielectric relaxation behavior of $[N(C_3H_7)_4]_2Cu_2Cl_6$. J. Alloys Compd. 49, 508-514.
  19. Rim Y H, Lee B S, Choi H W, Cho J H, and Yang Y S (2006) Electrical relaxation of bismuth germanate silicate glasses. J. Phys. Chem. B 110, 8094-8099. https://doi.org/10.1021/jp060415s
  20. Song C H, Choi H W, Kim M, Jin G Y, and Yang Y S (2007) Electrical Relaxations of Amorphous xKNbO-3 (1-x) SiO-2 (x=0.33, 0.5, 0.67, 0.8). J. Korean Phys. Soc. 51, 674-677. https://doi.org/10.3938/jkps.51.674
  21. Xu H, Zhang S, Anlage S M, Hu L, and Grüner G (2008) Frequencyand electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density. Phys. Rev. B 77, 075418. https://doi.org/10.1103/PhysRevB.77.075418