DOI QR코드

DOI QR Code

Switch-on Phenomena and Field Emission from Single-Walled Carbon Nanotubes Embedded in Glass

  • Daradkeh, Samer I. (Department of Physics, Mu'tah University) ;
  • Mousa, Marwan S. (Department of Physics, Mu'tah University)
  • Received : 2017.08.18
  • Accepted : 2017.09.08
  • Published : 2017.09.30

Abstract

In this study, we will describe a new design of carbon nanotubes tip. Single-walled carbon nanotubes produced using high-pressure CO over Fe particles (HiPCO) at CNI, Houston, TX used in this study. These tips were manufactured by employing a drawing technique using glass puller. Field electron microscopies with tips (cathode) to screen (Anode) separation of ~10 mm was used to characterize the electron emitters. The system was evacuated down to base pressure of (${\sim}10^{-8}$ mbar) when baked at up to (${\sim}200^{\circ}C$) over night. An electron field emission patterns, as well as current versus voltage characteristics and Fowler-Nordheim plots, are discussed.

Keywords

References

  1. Ala'a A A L Q, Marwan S M, and Fischer A (2015) Effect of insulating layer on the field electron emission performance of nano-apex metallic emitters. IOP Conf. Ser.: Mater. Sci. Eng. 92, 012021.
  2. Bani Ali E and Mousa M (2016) Switch-on phenomena and field emission from multi-walled carbon nanotubes embedded in glass. Appl. Microsc. 46, 244-252. https://doi.org/10.9729/AM.2016.46.4.244
  3. Binh V, Garcia N, and Purcell S T (1996) Electron field emission from atomsources: fabrication, properties, and applications of nanotips. Adv. Imaging Electron Phys. 95, 83-153.
  4. Cheng Y and Zhou O (2003) Electron field emission from carbon nanotubes. Comptes Rendus Physique 4, 1021-1033. https://doi.org/10.1016/S1631-0705(03)00103-8
  5. Dean K A and Chalamala B R (2000) Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 76, 375-377. https://doi.org/10.1063/1.125758
  6. Edgcombe C (2005) Development of Fowler-Nordheim theory for a spherical field emitter. Phys. Rev. B 72, 045420. https://doi.org/10.1103/PhysRevB.72.045420
  7. Edgcombe C J and Jonge N d (2007) Deduction of work function of carbon nanotube field emitter by use of curved-surface theory. J. Phys. D: Appl. Phys. 40, 4123. https://doi.org/10.1088/0022-3727/40/14/005
  8. Forbes R G (2010) Simple derivation of the formula for Sommerfeld supply density used in electron-emission physics and limitations on its use. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater., Proc., Measurement Phenom. 28, 1326-1329.
  9. Forbes R G (2012) Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation. Nanotechnology 23, 095706. https://doi.org/10.1088/0957-4484/23/9/095706
  10. Forbes R G, Deane J H B, Fischer A, and Mousa M S (2015) FowlerNordheim plot analysis: a progress report. Jordan J. Phys. 8, 125-147.
  11. Hong P N, Thang B H, Hong N T, Lee S, and Minh P N (2009) Electron field emission characteristics of carbon nanotube on tungsten tip. J. Phys.: Conf. Ser. 187, 012041. https://doi.org/10.1088/1742-6596/187/1/012041
  12. Iijima S. Helical microtubules of graphitic carbon. Nature 354, 56-58.
  13. Kyritsakis A and Xanthakis J (2014) Derivation of a generalized Fowler-Nordheim equation for nanoscopic field-emitters. Proc. R. Soc. A 471, 20140811.
  14. Madanat M, Mousa M, Al-Rabadi A, and Fischer A (2015) Electron microscopy-based performance evaluation of various tungsten fieldemitter tips Apex radii. Jordan J. Phys. 8, 79-85.
  15. Marwan S M, Shadi A, Mazen A M, and Anas N A R (2015) Investigating of the field emission performance on nano-apex carbon fiber and tungsten tips. IOP Conf. Ser.: Mater. Sci. Eng. 92, 012022.
  16. Minoux E, Groening O, Teo K B K, Dalal S H, Gangloff L, Schnell J P, Schnell J P, Hudanski L, Bu I Y, Vincent P, Legagneux P, Amaratunga G A, and Milne W I (2005) Achieving high-current carbon nanotube emitters. Nano Lett. 5, 2135-2138. https://doi.org/10.1021/nl051397d
  17. Modinos A (1984) Field, Thermionic, and Secondary Electron Emission Spectroscopy (Springer US).
  18. Mousa M S (1991) Effect of an internally conductive coating on the electron emission from glass tips. Surf. Sci. 246, 79-86. https://doi.org/10.1016/0039-6028(91)90397-B
  19. Mousa M S (2007) Influence of a dielectric coating on field electron emission from micro-point electron sources. Surf. Interface Anal. 39, 102-110. https://doi.org/10.1002/sia.2470
  20. Mousa M S and Hibbert D B (1993) Field emission of electrons from glass tips with internal conducting coats. J. Phys. D: Appl. Phys. 26, 697. https://doi.org/10.1088/0022-3727/26/4/026
  21. Qin X Z, Wang W L, Xu N S, Li Z B, and Forbes R G (2011) Analytical treatment of cold field electron emission from a nanowall emitter, including quantum confinement effects. Proc. R. Soc. A: Math., Phys. Eng. Sci. 467, 1029. https://doi.org/10.1098/rspa.2010.0460
  22. Saito Y and Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169-182. https://doi.org/10.1016/S0008-6223(99)00139-6
  23. Swanson L W and Bell A E (1973) Recent advances in field electron microscopy of metals. Adv. Electron. Electron Phys. 32, 193-309.
  24. Zhang L, Balzano L, and Resasco D E (2005) Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties. J. Phys. Chem. B 109, 14375-14381. https://doi.org/10.1021/jp0510488
  25. Zuber J D, Jensen K L, and Sullivan T E (2002) An analytical solution for microtip field emission current and effective emission area. J. Appl. Phys. 91, 9379. https://doi.org/10.1063/1.1474596