References
- 교육부(2015). 수학과 교육과정. 서울: 교육부.
- 김미경(2003). 중학교 3학년 상관관계 지도 내용 향상 방안에 관한 연구. 이화여자대학교 대학원 석사학위 논문.
- 김원경 외(2015). 고등학교 확률과 통계. 서울: 비상교육.
- 김화경.김선희.박경미.장혜원.이환철.이화영(2016). 정비례/반비례, 상관관계의 도입 시기 및 내용 조직에 대한 교육과정 국제 비교 연구. 수학교육학연구, 26(3), 403-420.
- 남주현.이영하(2005). 상관개념의 발달과 교수학적 중재에 관한 소고. 수학교육학연구, 15(3), 315-334.
- 노아라.유연주(2013). 우리나라 고등학생들의 상관관계 이해도 조사. 수학교육학연구, 23(4), 467-490.
- 박경미 외(2015). 2015 개정 수학과 교육과정 시안 개발 연구. 서울: 한국과학창의재단.
- 박지현(2008). 학습자의 오개념과 오류에 대한 교사들의 Pedagogical Content Knowledge 사례 연구 -중학교 1학년 함수 영역을 중심으로-. 이화여자대학교 대학원 석사학위논문.
- 안선영.방정숙(2006). 평면도형의 넓이에 대한 교사의 교수학적 내용 지식과 수업 실제 분석. 수학교육학연구 16(1), 25-41.
- 이경화(2004). 상관관계의 교수학적 변환에 관한 연구. 학교수학, 6(3), 251-266.
- 이정연.우정호(2009). 조건부확률 개념의 교수학적 분석과 이해 분석. 수학교육학연구, 19(2), 233-256.
- 조성민(2006). 교육과정 실행의 관점에서 본 수학교사 지식과 수업의 관련성 연구-고등학교 함수 내용을 중심으로-. 이화여자대학교 대학원 박사학위논문.
- Ball, D., Hill, H., & Bass, H. (2005). Who knows mathematics well enough to teach third grade and how can we decide? American educator, 29(1), 14-46.
- Batanero, C., Estepa, A., Godino, J. D., & Green, D. R. (1996). Intuitive strategies and preconceptions about association in contingency tables. Journal for Research in Mathematics Education, 27, 151-169. https://doi.org/10.2307/749598
- Batanero, C., Henry, M., & Parzysz, B. (2005). The nature of chance and probability. In G. A. Jones (Ed.), Exploring probability in school : Challenges for teaching and learning (pp. 15-37). USA: Springer.
- Batanero, C. & Sanchez, E. (2005). What is the nature of high school students'conceptions and misconceptions about probability? In G. A. Jones (Ed.), Exploring probability in school : Challenges for teaching and learning (pp. 241-266). USA: Springer.
- Chick, H., Baker, M., Pham, T., & Cheng, H. (2006). Aspects of teachers' pedagogical content knowledge for decimals. In J. Novotana, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (Volume 2, pp. 297-304). Prague, Czech Republic.
- Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Washington, DC: National Governors Association for Best Practices and the Council State School Officers.
- Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report: A preK-12 curriculum framework. VA: American Statistical Association. Retrieved June 4, 2017, from http://www.amstat.org/education/gaise/GAISPreK-12.htm.
- Gal, I. (2005). Towards "probability literacy" for all citizens: Building blocks and instructional dilemmas. In G. A. Jones (Ed.), Exploring probability in school : Challenges for teaching and learning (pp. 39-63). USA: Springer.
- Garfield, B. J. & Ben-Zvi, D. (2010). Developing students' statistical reasoning. USA: Springer.
- Misailidou, C. (2008). Assessing and developing pedagogical content knowledge: A new approach. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings the 32nd conference of the international group for the psychology of mathematics education (Volume 3, pp. 391-398). Morelia, Mexico.
- NCTM (2000). Principles and standards for school mathematics. VA: NCTM.
- Petrou, M. & Goulding, M. (2011). Conceptualising teachers' mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical Knowledge in Teaching (pp. 9-25). London and New York: Springer.
- Pfannkuch, M., Seber, G. A. F., & Wild, C. J. (2002). Probability with less pain. Teaching Statistics, 24(1), 24-30. https://doi.org/10.1111/1467-9639.00076
- Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
- Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 319-369). USA: Information age publishing.
- Turner, F. & Rowland, T. (2011). The knowledge Quartet as an organising framework for developing and deepening teachers' mathematics knowledge. In T. Rowland & K. Ruthven (Eds.) Mathematical Knowledge in Teaching (pp. 195-212). London and New York: Springer.
- Watson, J. M. (2001). Profiling teachers' competence and confidence to teach particular mathematics topics: The case of chance and data. Journal of Mathematics Teacher Education, 4, 305-337. https://doi.org/10.1023/A:1013383110860
- Watson, A. & Barton, B. (2011). Teaching mathematics as the contextual application of mathematical modes of enquiry. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 65-82). New York: Springer.
- Watson, J. M. & Callingham, R. A. (2003). Statistical literacy: A complex hierarchical construct. Statistics Education Research Journal, 2(2), 3-46.
- Watson, J. M., Callingham, R. A., & Nathan, E. (2009). Probing teachers' pedagogical content knowledge in statistics: "How will Tom get to school tomorrow?" In R. Hunter, B. Bicknell, & T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia (Volume 2, pp. 563-570). NZ: MERGA.
- Watson, J. M. & Nathan, E. L. (2010). Assessing the interpretation of two-way tables as part of statistical literacy. In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society (pp. 69-87). The Netherlands: International Statistics Institute.