References
- Bakker, J., 1991. Analysis of humidity effects on growth and production of glasshouse fruit vegetables. PhD Thesis, Wageningen.
- Carvajal, F., E. Crisanto, F. J. Anguilar, F. Aquera, and A. Aguilar, 2006. Greenhouses detection using an artificial neural network with a very high resolution satellite image. ISPRS Technical Commission II Symposium, Vienna: pp.12-14.
- Ehret, D., D. Hill, A. Raworth, and B. Estergaard, 2008. Artificial neural network modelling to predict cuticle cracking in greenhouse peppers and tomatoes. Computers and Electronics in Agriculture 61: 108-116. https://doi.org/10.1016/j.compag.2007.09.011
- Fen, H. and M. Chengwei, 2010. Modeling greenhouse air humidity by means of artificial neural network and principal components analysis. Computer and Electronics in Agriculture 71: S19-S23. https://doi.org/10.1016/j.compag.2009.07.011
- Ferreira, P., A. Faria, and E. Ruano, 2002. Neural network models in greenhouse air temperature prediction. Neurocomputing 43: 51-75. https://doi.org/10.1016/S0925-2312(01)00620-8
- Fourati, F. and M. Chtourou, 2007. A greenhouse control with feed-forward and recurrent neural networks. Simulation Modelling Practice and Theory 15: 1016-1028. https://doi.org/10.1016/j.simpat.2007.06.001
- Julien, A., L. Emmanuel, A. Clément, A. Rufin, and A. Brice, 2013. Modeling solar energy transfer through roof material in Africa Sub-Saharan Regions. ISRN Renewable Energy 34(7): 632-645.
- Okunlola, A. I., 2013. Glasshouse production of vegetables and ornamentals for agricultural productivity in Nigeria. World Journal of Agricultural Sciences 1(4): 113-119.
- Owolabi, A., A. Olaniyan, J. Awu, and S. Oyewole, 2016. Predicting the level of postharvest losses of rice along the food value chain using artificial neural network. Current Research on Agriculture and Life Science 34(1): 41-47.
- Pahlavan, R., M. Omid, and A. Akram, 2012. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37: 171-176. https://doi.org/10.1016/j.energy.2011.11.055
- Ruano, E., M. Crispim, E. Conceicao, and R. Lucio, 2006. Prediction of building's temperature using neural networks models. Energy and Buildings 38: 682-694. https://doi.org/10.1016/j.enbuild.2005.09.007
- Seginer, I., 1997. Some artificial neural network applications to greenhouse environmental control. Computer and Electronics in Agriculture 18: 167-186. https://doi.org/10.1016/S0168-1699(97)00028-8
- Trigo, M. and P. Palutikof, 1999. Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach. Clim Res 13: 45-59. https://doi.org/10.3354/cr013045
- Wilson, D. and T. Martinez, 2003. The general inefficiency of batch training for gradient descent learning. Neural Networks 16: 1429-1451. https://doi.org/10.1016/S0893-6080(03)00138-2