DOI QR코드

DOI QR Code

Estimation of Solar Energy Based on High-Resolution Digital Elevation Model on the Seoul Area

서울지역의 고해상도 수치표고모델기반 태양 에너지 산출

  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Jang, Min (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Min, Jae-Sik (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Kim, Bu-Yo (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 장민 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 민재식 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 조일성 (강릉원주대학교 복사위성연구소) ;
  • 김부요 (강릉원주대학교 복사위성연구소) ;
  • 이규태 (강릉원주대학교 복사위성연구소)
  • Received : 2017.05.23
  • Accepted : 2017.08.08
  • Published : 2017.09.30

Abstract

Solar energy is calculated using high-resolution digital elevation model (DEM). In focus on Seoul metropolitan area, correction coefficients of direct and diffuse solar energy with the topographic effect are calculated from DEM with 1720, 900, 450, 90 and 30 spatial resolutions ($m{\times}m$), respectively. The solar energy on the real surface with high-resolution is corrected using by the correction coefficients with topographic effect from the solar energy on horizontal surface with lower resolution. Consequently, the solar energy on the real surface is more detailed distribution than those of horizontal surface. In particular, the topographic effect in the winter is larger than summer because of larger solar zenith angle in winter. In Seoul metropolitan area, the monthly mean topographic effects are more than 200% in winter and within 40% in summer. And annual topographic effects are negative role with more than -60% and positive role with below 40%, respectively. As a result, topographic effect on real surface is not a negligible factor when calculating and analyzing solar energy using regional and global models.

Keywords

References

  1. CGIAR-CSI, 2012: SRTM 90m Digital Elevation Data [Available online at http://srtm.csi.cgiar.org/index.asp.].
  2. Dozier, J., and J. Frew, 1990: Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens., 28, 963-969. https://doi.org/10.1109/36.58986
  3. Dubayah, R. C., 1994: Modelling a solar radiation topoclimatology for the Rio Grande River Basin. J. Veg. Sci., 5, 627-640. https://doi.org/10.2307/3235879
  4. Dubayah, R. C., and P. M. Rich, 1995: Topographic solar radiation models for GIS. Int. J. Geogr. Inf. Syst., 9, 405-419. https://doi.org/10.1080/02693799508902046
  5. Fu, P., and P. M. Rich, 2000: The Solar Analyst 1.0 User Manual. Helios Environment Modeling Institute, 49 pp.
  6. George, R. L., and E. L. Maxwell, 1999: High-resolution maps of solar collector performance using a climatological solar radiation model. Proc. of the 1999 Annual Conference, American Solar Energy Society, 243-248.
  7. Hsia, Y. J., and W. Wang, 1985: Calculation of Potential Solar Irradiance on Slopes. Taiwan Forestry Research Institute, Research Note 001, 22 pp.
  8. Jee, J. B., I. Zo, C. Lee, Y. Choi, K. Kim, and K. T. Lee, 2013a: Analysis of very high resolution solar energy based on solar-meteorological resources map with 1km spatial resolution. J. Korean Soc. New Renewable Energy, 9, 15-22, doi:10.7849/ksnre.2013.9.2.015 (in Korean with English abstract).
  9. Jee, J. B., I. Zo, and K. T. Lee, 2013b: A study on the retrievals of downward solar radiation at the surface based on the observations from multiple geostationary satellites. Korean. J. Remote. Sens., 29, 123-135, doi:10.7780/kjrs.2013.29.1.12 (in Korean with English abstract).
  10. Jee, J. B., W.-H. Lee, I.-S. Zo, and K.-T. Lee: 2011: Correction of one-layer solar radiation model by multi-layer line-by-line solar radiation model. Atmosphere, 21, 151-162 (in Korean with English abstract).
  11. Jee, J. B., and Y.-J. Choi, 2014: Conjugation of landsat data for analysis of the land surface properties in capital area. J. Korean Earth Sci. Soc., 35, 54-68, doi:10.5467/JKESS.2014.35.1.54 (in Korean with English abstract).
  12. Kondratyev, J., 1969: Radiation in the Atmospheric. Academic Press, USA, 916 pp.
  13. Lee, S.-H., S.-W. Kim, W. M. Angevine, L. Bianco, S. A. McKeen, C. J. Senff, M. Trainer, S. C. Tucker, and R. J. Zamora, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127-2143, doi:10.5194/acp-11-2127-2011.
  14. Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73-102.
  15. Lai, Y.-J., M.-D. Chou, and P.-H. Lin, 2009: Parameterization of topographic effect on surface solar radiation. J. Geophy. Res., 115, D01104, doi:10.1029/2009JD012305.
  16. Michael, K., U. Pilz, and E. Raschke, 1978: A modified two-stream approximation for computations of the solar radiation budget in a cloudy atmosphere. Tellus, 30, 429-435.
  17. Park, S. H., J. B., Jee, and C. Y. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topographies and landuses over Seoul metropolitan areas. Atmosphere, 25, 323-336, doi:10.14191/Atmos.2015.25.2.309 (in Korean with English abstract).
  18. Perez, R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and F. Vignola, 2002: A new operational model for satellite-derived irradiances: Description and validation. Sol. Energy, 73, 307-317. https://doi.org/10.1016/S0038-092X(02)00122-6
  19. Rich, P. M., W. A. Hetrick, S. C. Saving, and R. O. Dubayah, 1994: Using viewshed models to calculate intercepted solar radiation: Applications in ecology. ASPRS Technical papers, 524-529.
  20. Rogelj, J., 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, Cambridge, 3-29.
  21. Weymouth, G. T., and J. F. Le Marshall, 1999: An operational system to estimate global solar exposure over the Australian region from satellite observation. Australia Meteor. Mag., 48, 181-195.
  22. Yi, C., S. M. An, K. R. Kim, H.-G. Kwon, and J.-S. Min, 2016: Surface micro-climate analysis based on urban morphological characteristics: Temperature deviation estimation and evaluation. Atmosphere, 26, 445-459, doi:10.14191/Atmos.2016.26.3.445 (in Korean with English abstract).
  23. Yi, C., T. H. Kwon, M.-S. Park, Y. J. Choi, and S. M. An, 2015: A study on the roughness length spatial distribution in relation to the Seoul building morphology. Atmosphere, 25, 339-351, doi:10.14191/Atmos.2015.25.2.339 (in Korean with English abstract).
  24. Zo, I.-S., J.-B. Jee, and K.-T. Lee, 2014: Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korean peninsula. Asia-Pac. J. Atmos. Sci., 50, 575-584, doi:10.1007/s13143-014-0047-0.
  25. Zo, I.-S., J.-B. Jee, K.-T. Lee, and B.-Y. Kim, 2016: Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction. Asia-Pac. J. Atmos. Sci., 52, 405-412. https://doi.org/10.1007/s13143-016-0024-x