DOI QR코드

DOI QR Code

Electrodeposition of SnS Thin film Solar Cells in the Presence of Sodium Citrate

  • Kihal, Rafiaa (Laboratoire d'Analyses Industrielles et Genie des Materiaux, Departement de Genie des Procedes, Faculte des Sciences et de la Technologie) ;
  • Rahal, Hassiba (Laboratoire d'Analyses Industrielles et Genie des Materiaux, Departement de Genie des Procedes, Faculte des Sciences et de la Technologie) ;
  • Affoune, Abed Mohamed (Laboratoire d'Analyses Industrielles et Genie des Materiaux, Departement de Genie des Procedes, Faculte des Sciences et de la Technologie) ;
  • Ghers, Mokhtar (Laboratoire d'Etude des Surfaces et Interfaces de la Matiere Solide, Departement de Physique, Faculte des Sciences, Universite Badji Mokhtar Annaba)
  • 투고 : 2017.04.08
  • 심사 : 2017.06.21
  • 발행 : 2017.09.30

초록

SnS films have been prepared by electrodeposition technique onto Cu and ITO substrates using acidic solutions containing tin chloride and sodium thiosulfate with sodium citrate as an additive. The effects of sodium citrate on the electrochemical behavior of electrolyte bath containing tin chloride and sodium thiosulfate were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were characterized by XRD, FTIR, SEM, optical, photoelectrochemical, and electrical measurements. XRD data showed that deposited SnS with sodium citrate on both substrates were polycrystalline with orthorhombic structures and preferential orientations along (111) directions. However, SnS films with sodium citrate on Cu substrate exhibited a good crystalline structure if compared with that deposited on ITO substrates. FTIR results confirmed the presence of SnS films at peaks 1384 and $560cm^{-1}$. SEM images revealed that SnS with sodium citrate on Cu substrate are well covered with a smooth and uniform surface morphology than deposited on ITO substrate. The direct band gap of the films is about 1.3 eV. p-type semiconductor conduction of SnS was confirmed by photoelectrochemical and Hall Effect measurements. Electrical properties of SnS films showed a low electrical resistivity of $30{\Omega}cm$, carrier concentration of $2.6{\times}10^{15}cm^{-3}$ and mobility of $80cm^2V^{-1}s^{-1}$.

키워드

참고문헌

  1. A. Ghazali, Z. Zainal, M. Z. Hussein and A. Kassim, Solar Energy Mater and Solar Cells, 1998, 55(3), 237-249. https://doi.org/10.1016/S0927-0248(98)00106-8
  2. S. M. Sze and K. K. Ng, Physics of semiconductors devices, 3th Ed., John Wiley and Sons, Hoboken, New Jersey, (2007) 719.
  3. S. Cheng, Y. He and G. Chen, Mater. Chem. Phys, 2008, 110(2), 449-453. https://doi.org/10.1016/j.matchemphys.2008.03.004
  4. M. Ichimura, K. Takeuchi, Y. Ono and E. Arai, Thin Solid Films, 2000, 361-362, 98-101. https://doi.org/10.1016/S0040-6090(99)00798-1
  5. B. Ghosh, S. Chowdhury, P. Banerjee and S. Das, Thin Solid Films, 2011, 519(10), 3368-3372. https://doi.org/10.1016/j.tsf.2010.12.151
  6. N. K. Reddy and K. T. R. Reddy, Solid. State. Electronics, 2005, 49(6), 902-906. https://doi.org/10.1016/j.sse.2005.03.003
  7. S. C. Ray, M. K. Karanjai and D. D. Gupta, Thin Solid Films, 1999, 350(1), 72-78. https://doi.org/10.1016/S0040-6090(99)00276-X
  8. T. Shrividhya, G. Ravi and T. Mahalingam, Int. J. ChemTech Res., 2014, 6(6), 3382-3384.
  9. M. Kul, Vaccum, 2014, 107, 213-218. https://doi.org/10.1016/j.vacuum.2014.02.005
  10. N. Revathi, S. Bereznev, J. Lehner, R. Raksmaa, M. Safonova, E. Mellikov and O. Volobujeva, Materials and Technology, 2015, 49(1), 149-152.
  11. S. Cheng, Y. He, G. Chen, E. C. Cho and G. Conibeer, Surf. Coating. Tech., 2008, 202(24), 6070-6074. https://doi.org/10.1016/j.surfcoat.2008.07.011
  12. S. Cheng, Y. Chen, C. Huang and G. Chen, Thin Solid Films, 2006, 500(1), 96-100. https://doi.org/10.1016/j.tsf.2005.11.028
  13. M. Gunasekaran and M. Ichimura, Solar Energy Mater and Solar Cells, 2007, 91(9), 774-778. https://doi.org/10.1016/j.solmat.2006.10.026
  14. P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock and R. G. Gordon, Adv. Energy. Mater, 2011, 1(6), 1116-1125. https://doi.org/10.1002/aenm.201100330
  15. H.Y. He, J. Fei and J. Lu, Mater. Sci. Semiconductor. Proc., 2014, 24, 90-95. https://doi.org/10.1016/j.mssp.2014.03.034
  16. M. Z. Iqbal, F. Wang, M. Y. Rafique, S. Ali, M. H. Farooq and M. Ellahi, Mater. Lett, 2013, 106, 33-36. https://doi.org/10.1016/j.matlet.2013.04.051
  17. P. Balaz, L. Takac, T. Ohtani, D. E. Mack, E. B. rova, V. Soika and M. Achimovicova, J. Alloys. Comp., 2002, 337, 76-82. https://doi.org/10.1016/S0925-8388(01)01910-7
  18. B. Ghosh, M. Das, P. Banerjee and S. Das, App. Surf. Sci., 2008, 254(20), 6436-6440. https://doi.org/10.1016/j.apsusc.2008.04.008
  19. F. Alam and V. Dutta, App. Surf. Sci., 2015, 358, 491-497. https://doi.org/10.1016/j.apsusc.2015.07.211
  20. A. Tanusevski and D. Poelman, Solar Energy Mater and Solar Cells, 2003, 80(3), 297-303. https://doi.org/10.1016/j.solmat.2003.06.002
  21. M. G. Sousa, A. F. da Cunha and P. A. Fernandes, J. Alloys. Comp., 2014, 592, 80-85. https://doi.org/10.1016/j.jallcom.2013.12.200
  22. S. Cheng, G. Chen, Y. Chen and C. Huang, Opt. Mater., 2006, 29(4), 439-444. https://doi.org/10.1016/j.optmat.2005.10.018
  23. Z. Zainal, S. Nagalingam and T. M. Hua, J. Mater Sci: Mater. Electronics, 2005, 16(5), 281-285. https://doi.org/10.1007/s10854-005-0545-z
  24. M. Bouroushian, T. Kosanovic, D. Karoussos and N. Spyrellis, Electrochim. Acta, 2009, 54(9), 2522-2528. https://doi.org/10.1016/j.electacta.2008.07.028
  25. H. M. M. N. Hennayaka and H. S. Lee, Thin Solid Films, 2013, 548, 86-90. https://doi.org/10.1016/j.tsf.2013.09.011
  26. D. Pottier and G. Maurin, J. App. Electrochem., 1989, 19(3), 361-367. https://doi.org/10.1007/BF01015237
  27. M. C. F. Oliveira, M. Azevedo and A. Cunha, Thin Solid Films, 2002, 405(1), 129-134. https://doi.org/10.1016/S0040-6090(01)01720-5
  28. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li and Y. Liu, Electrochim Acta, 2009, 54(11), 3004-3010. https://doi.org/10.1016/j.electacta.2008.12.016
  29. Y. Cui, S. Zuo, J. Jiang, S. Yuan and J. Chu, Solar Energy Mater and Solar Cells, 2011, 95(8), 2136-2140. https://doi.org/10.1016/j.solmat.2011.03.013
  30. I. Sisman and H. Oz, Electrochim Acta, 2011, 56(13), 4889-4894. https://doi.org/10.1016/j.electacta.2011.03.060
  31. C. Han, Q. Liu and D. G. Ivey, Electrochim Acta, 2008, 53(28), 8332-8340. https://doi.org/10.1016/j.electacta.2008.06.037
  32. I. Hanzu, T. Djenizian, G. F. Ortiz and P. Knauth, J. Phys. Chem. C., 2009, 113(48), 20568-20575. https://doi.org/10.1021/jp906070v
  33. N. R. Mathews, C. A. Chavez, M. A. C. Jacome and J. A. T. Antonio, Electrochim. Acta, 2013, 99, 76-84. https://doi.org/10.1016/j.electacta.2013.03.044
  34. M. Sharon, M. S. K. S. Ramaiah, M. Kumar, M. N. Spallart and C. L. Clement, J. Electroanal Chem., 1997, 436(1-2), 49-52. https://doi.org/10.1016/S0022-0728(97)00124-1
  35. A. S. Aliyev, M. E. Rouby, M. T. Abbasov and A. S. Suleymanov, Nanoscience and Nanotechnology: An International Journal, 2013, 3(3), 60-64
  36. N. R. Mathews, Solar Energy, 2012, 86(4), 1010-1016. https://doi.org/10.1016/j.solener.2011.06.012
  37. Z. Zainal, M. Z. Hussein and A. Ghazali, Solar Energy Mater and Solar Cells, 1996, 40(4), 347-357. https://doi.org/10.1016/0927-0248(95)00157-3
  38. K. Anuar, W. T. Tan, M. S. Atan, M. Sc, K. Dzulkefly, SM. Ho, M. Sc, H. Md. Jelas and N. Saravanan. Pacific J Sci and Tech, 2007, 8(2), 252-260.
  39. M. Steichen, R. Djemour, L. Gutay, J. Guillot, S. Siebentritt and P. J. Dale, J. Phys. Chem C, 2013, 117(9), 4383-4393. https://doi.org/10.1021/jp311552g
  40. M. A. M. Ibrahim and R. M. A. Radadi, Int. J. Electrochem. Sci, 2015, 10, 4946-4971.
  41. A. J. Bard, L. R. Faulkner, Electrochemical methods, fundamentals and Applications, 2nd Ed., John Wiley & sons, Inc, New York, 2000.
  42. L. K. Khel, S. Khan and M. I. Zaman, J. Chem. Soc. Pak., 2005, 27, 24-28.
  43. J. Henry, K. Mohanraj, S. Kannan, S. Barathan and G. Sivakumar, Eur. Phys. J. Appl. Phys, 2013, 61, 10301-10304. https://doi.org/10.1051/epjap/2012120359
  44. Y. Xu, A. Al-Salim and R. D. Tilley, Nanomaterials., 2012, 2(1), 54-64. https://doi.org/10.3390/nano2010054
  45. J. J. M. Vequizo, M. Yokoyama, M. Ichimura, and A. Yamakata, Appl. Phy. Exp., 2016, 9(6), 067101. https://doi.org/10.7567/APEX.9.067101
  46. N. Revathi, S. Bereznev, J. Iljina, M. Safonova, E. Mellikov and O. Volobujeva, J. Mater. Sci: Mater. Electr., 2013, 24, 4739-4744. https://doi.org/10.1007/s10854-013-1468-8
  47. Y. Yongli and C. Shuying, J. Semiconductors, 2008, 29(12), 2322-2325.

피인용 문헌

  1. Electrodeposition of Single Phase SnS Thin Films: Effect of Electrolytic Bath Temperature on the Final Film Properties vol.166, pp.2, 2019, https://doi.org/10.1149/2.0661902jes