DOI QR코드

DOI QR Code

Effect of Thermal Treatment on the Performance and Nanostructures in Polymer Solar Cells with PTB7-Th:PC71BM Bulk Heterojunction Layers

  • Lee, Sooyong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Seo, Jooyeok (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Jeong, Jaehoon (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Lee, Chulyeon (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Song, Myeonghun (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Hwajeong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Youngkyoo (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
  • 투고 : 2017.08.17
  • 심사 : 2017.09.13
  • 발행 : 2017.09.30

초록

Here we report the influence of thermal treatment on the performance of high efficiency polymer solar cells with the bulk heterojunction films of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl $C_{71}$ butyric acid methyl ester ($PC_{71}BM$). The crystalline nanostructure of PTB7-Th:$PC_{71}BM$ layers, which were annealed at three different temperatures, was investigated by employing synchrotron radiation grazing incidence X-ray diffraction (GIXD) technique. Results showed that the device performance was slightly reduced by thermal annealing at $50^{\circ}C$ but became significantly poor by thermal annealing at $100^{\circ}C$. The poor device performance by thermal annealing was attributed to the collapse in the crystalline nanostructure of PTB7-Th in the PTB7-Th:$PC_{71}BM$ layers as evidenced by the GIXD measurements that exhibited huge reduction in the intensity of PTB7-Th (100) peak even at $50^{\circ}C$.

키워드

참고문헌

  1. Ameri, T., Lia, N., and Brabec, C. J., "Highly efficient organic tandem solar cells: a follow up review", Energy Environ. Sci., Vol. 6, pp. 2390-2413, 2013. https://doi.org/10.1039/c3ee40388b
  2. Lu, L. and Yu, L., "Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it", Adv. Mater., Vol. 26, pp. 4413-4430, 2014. https://doi.org/10.1002/adma.201400384
  3. Kim, K., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H., and Kim, Y., "Organic solar cells based on conjugated polymers: history and recent advances", Korean J. Chem. Eng., Vol. 31, No. 7, pp. 1095-1104, 2014. https://doi.org/10.1007/s11814-014-0154-8
  4. Facchetti, A., "Polymer donor-polymer acceptor (all-polymer) solar cells", Mater. Today, Vol. 16, No. 4, pp. 123-132, 2013. https://doi.org/10.1016/j.mattod.2013.04.005
  5. Darling, S. B. and You, F., "The case for organic photovoltaics", RSC Adv., Vol. 3, pp. 17633-17648, 2013. https://doi.org/10.1039/c3ra42989j
  6. Heeger, A. J., "25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation", Adv. Mater., Vol. 26, No. 1, pp. 10-28, 2014. https://doi.org/10.1002/adma.201304373
  7. Yan, J. and Saunders, B. R., "Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells", RSC Adv., Vol. 4, pp. 43286-43314, 2014. https://doi.org/10.1039/C4RA07064J
  8. Woo, S., Kim, W., Kim, H., Yi, Y., Lyu, H., and Kim, Y., "8.9% single-stack inverted polymer solar cells with electron-rich polymer nanolayer modified inorganic electron-collecting buffer layers", Adv. Energy Mater., Vol. 4, No. 7, pp. 1301692, 2014. https://doi.org/10.1002/aenm.201301692
  9. Wang, N., Chen, Z., Wei, W., and Jiang, Z., "Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments", J. Am. Chem. Soc., Vol. 135, No. 45, pp. 17060-17068, 2013. https://doi.org/10.1021/ja409881g
  10. Padinger, F., Rittberger, R. S., and Sariciftci, N. S., "Effects of postproduction treatment on plastic solar cells", Adv. Funct. Mater., Vol. 13, No. 1, pp. 85-88, 2003. https://doi.org/10.1002/adfm.200390011
  11. Nguyen, T. L., Choi, H., Ko, S., Uddin, M. A., Walker, B., Yum, S., Jeong, J., Yun, M. H., Shin, T. J., Hwang, S., Kim, J. Y., Woo, H. Y., "Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a -300 nm thick conventional single-cell device", Energy Enviorn. Sci., Vol. 7, pp. 3040-3051, 2014. https://doi.org/10.1039/C4EE01529K
  12. Zhang, M., Gu, Y., Guo, X., Liu, F., Zhang, S., Huo, L., Russell, T. P., and Hou, J., "Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%", Adv. Mater., Vol. 25, No. 35, pp. 4944-4949, 2013. https://doi.org/10.1002/adma.201301494
  13. Kim, Y., Choulis, S. A., Nelson, J., Bradley, D. D. C., Cook, S., and Durrant, J. R., "Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene", Appl. Phys. Lett., Vol. 86, pp. 063502, 2005. https://doi.org/10.1063/1.1861123
  14. Deng, Y., Liu, J., Wang, J., Liu, L., Li, W., Tian, H., Zhang, X., Xie, Z., Geng, Y., and Wang, F., "Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells", Adv. Mater. Vol. 26, No. 3, pp. 471-476, 2014. https://doi.org/10.1002/adma.201303586
  15. Reyes-Reyes, M., Kim, K., and Carroll, D. L., "High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)$C_{61}$ blends", Appl. Phys. Lett., Vol. 87, pp. 083506, 2005. https://doi.org/10.1063/1.2006986
  16. Liao, S., Jhuo, H., and Cheng, Y., "Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance", Adv. Mater., Vol. 25, No. 34, pp. 4766-4771, 2013. https://doi.org/10.1002/adma.201301476
  17. Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherz, T., and Hummelen, J. C., "2.5% efficient organic plastic solar cells", Appl. Phys. Lett., Vol. 78, pp. 841, 2001. https://doi.org/10.1063/1.1345834
  18. Guo, X., Zhou, N., Lou, S. J., Smith, J., Tice, D. B., Hennek, J. W., Ortiz, R. P., Navarrete, J. T. L., Li, S., Strzalka, J., Chen, L. X., Chang, R. P. H., Facchetti, A., and Marks, T. J., "Polymer solar cells with enhanced fill factors", Nat. Photonics, Vol. 7, pp. 825-833, 2013. https://doi.org/10.1038/nphoton.2013.207
  19. Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. D. C., Giles, M., McCulloch, I., Ha, C. S., and Ree, M., "A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells", Nat. Mater., Vol. 5, pp. 197-203, 2006. https://doi.org/10.1038/nmat1574
  20. Nam, S., Seo, J., Han, H., Kim, H., Hahm, S. G., Ree, M., Gal, Y., Anthopoulos, T. D., Bradlet, D. D. C., and Kim, Y., ">10% efficiency polymer: fullerene solar cells with polyacetylene-based polyelectrolyte interlayers", Adv. Mater. Interfaces, Vol. 3, No. 23, pp. 1600415, 2016. https://doi.org/10.1002/admi.201600415
  21. Krebs, F. C., "Fabrication and processing of polymer solar cells: a review of printing and coating techniques", Sol. Energy Mater. Sol. Cell., Vol. 93, No. 4, pp. 394-412, 2009. https://doi.org/10.1016/j.solmat.2008.10.004
  22. Krebs, F. C., Gevorgyan, S. A., and Alstrup, J., "A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies", J. Mater. Chem., Vol. 19, pp. 5442-5451, 2009. https://doi.org/10.1039/b823001c
  23. Lee, S., Kim, H., and Kim, Y., "Influence of physical load on the stability of organic solar cells with polymer:fullerene bulk heterojunction nano layers", Curr. Photovoltaic Res., Vol. 4, No. 2, pp. 48-53, 2016. https://doi.org/10.21218/CPR.2016.4.2.048
  24. Sondergaard, R., Hosel, M., Angmo, D., Larsen-Olsen, T. T., and Krebs, F. C., "Roll-to-roll fabrication of polymer solar cells", Mater. Today, Vol. 15, No. 1, pp. 36-49, 2012. https://doi.org/10.1016/S1369-7021(12)70019-6
  25. Blankenburg, L., Schultheis, K., Schache, H., Sensfuss, S., and Schronder, M., "Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells", Sol. Energy Mater. Sol. Cell., Vol. 93, No. 4, pp. 476-483, 2009. https://doi.org/10.1016/j.solmat.2008.12.013
  26. Nam, S., Seo, J., Woo, S., Kim, W., Kim, H., Bradley, D. D. C., and Kim, Y., "Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electroncollecting buffer layers", Nat. Commun., Vol. 6, pp. 8929, 2015. https://doi.org/10.1038/ncomms9929
  27. Kim, Y., Nelson, J., Zhang, T., Cook, S., Durrant, J. R., Kim, H., Park, J., Shin, M., Nam, S., Heeney, M., McCulloch, I., Ha, C. S., and Bradley, D. D. C., "Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells", ACS Nano, Vol. 3, No. 9, pp. 2557-2562, 2009. https://doi.org/10.1021/nn900798m
  28. Peters, C. H., Sachs-Quintana, I. T., Mateker, W. R., Heumueller, T., Rivnay, J., Noriega, R., Beiley, Z. M., Hoke, E. T., Salleo, A., and McGehee, M. D., "The mechanism of burn-in loss in a high efficiency polymer solar cell", Adv. Mater., Vol. 24, No. 5, pp. 663-668, 2012. https://doi.org/10.1002/adma.201103010
  29. Kim, H., Shin, M., Park, J., and Kim, Y., "Initial performance changes of polymer/fullerene solar cells by short-time exposure to simulated solar light", ChemSusChem, Vol. 3, No. 4, pp. 476-480, 2010. https://doi.org/10.1002/cssc.200900291
  30. Kim, H., Shin, M., Park, J., and Kim, Y., "Effect of long time annealing and incident light intensity on the performance of polymer:fullerene solar cells", IEEE Trans. Nanotechnol., Vol. 9, No. 3, pp. 400-406, 2010. https://doi.org/10.1109/TNANO.2009.2027120
  31. Nam, S., Woo, S., Seo, J., Kim, W. H., Kim, H., McNeill, C. R., Shin, T. J., Bradley, D. D. C., and Kim, Y., "Pronounced cosolvent effects in polymer:polymer bulk heterojunction solar cells with sulfur-rich electron-donating and imide- containing electronaccepting polymers", ACS Appl. Mater. Interfaces, Vol. 7, No. 29, pp. 15995-16002, 2015. https://doi.org/10.1021/acsami.5b04224
  32. Jorgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., and Krebs, F. C., "Stability of polymer solar cells", Adv. Mater., Vol. 24, No. 5, pp. 580-612, 2012. https://doi.org/10.1002/adma.201104187
  33. Nam, S., Shin, M, Kim, H., and Kim, Y., "Temperature/time-dependent crystallization of polythiophene:fullerene bulk heterojunction films for polymer solar cells", Nanoscale, Vol. 2, pp. 2384-2389, 2010. https://doi.org/10.1039/c0nr00379d
  34. Wang, Y., Xu, W., Zhang, J., Zhou, L., Lei, Gang, Liu, C., Lai, W., and Huang, W., "A small molecule/fullerene binary acceptor system for high-performance polymer solar cells with enhanced light-harvesting properties and balanced carrier mobility", J. Mater. Chem. A, Vol. 5, pp. 2460-2465, 2017. https://doi.org/10.1039/C6TA09530E
  35. Shin, M., Kim, H., Park, J., Nam, S., Heo, K., Ree, M., Ha, C. S., and Kim, Y., "Abrupt morphology change upon thermal annealing in poly(3-hexylthiophene)/soluble fullerene blend films for polymer solar cells", Adv. Funct. Mater., Vol. 20, No. 5, pp. 748-754, 2010. https://doi.org/10.1002/adfm.200901655
  36. Foster, S., Deledalle, F., Mitani, A., Kimura, T., Kim, K., Okachi, T., Kirchartz, T., Oguma, J., Durrant, J. R., Doi, S., and Nelson, J., "Electron collection as a limit to polymer:PCBM solar cell efficiency: effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM", Adv. Energy Mater., Vol. 4, No. 14, pp. 1400311, 2014. https://doi.org/10.1002/aenm.201400311
  37. Nam, S., Park, S., Kim, H., Lee, J., and Kim, Y., "Strong addition effect of charge-bridging polymer in polymer:fullerene solar cells with low fullerene content", RSC Adv., Vol. 4, pp. 24914-24921, 2014. https://doi.org/10.1039/C4RA01918K
  38. Shin, M., Kim, H, Nam, S., Park, J., and Kim, Y., "Influence of hole-transporting material addition on the performance of polymer solar cells", Energy Environ. Sci., Vol. 3, pp. 1538-1543, 2010. https://doi.org/10.1039/c002771e
  39. Pranculis, V., Ruseckas, A., Vithanage, D. A., Hedley, G. J., Samuel, I. D. W., and Gulbinas, V., "Influence of blend ratio and processing additive on free carrier yield and mobility in PTB7: $PC_{71}BM$ photovoltaic solar cells", J. Phys. Chem. C, Vol. 120, No. 18, pp. 9588-9594, 2016. https://doi.org/10.1021/acs.jpcc.6b01548
  40. Han, H., Lee, H., Nam, S., Jeong, J., Lee, I., Kim, H., Ha, C. S., and Kim, Y., "Poly(3-hexylthiophene-co-benzothiadiazole)(THBT) as an electron- accepting polymer for normal and inverted type all-polymer solar cells", Polym. Chem., Vol. 4, pp. 2053-2061, 2013. https://doi.org/10.1039/c2py21144k
  41. Nam, S., Park, S., Seo, J., Jeong, J., Lee, S., Kim, J., Kim, H., and Kim, Y., "Influence of annealing temperature on the nanostructure and performance of polymer: Polymer solar cells", J. Korean Phys. Soc., Vol. 63, No. 7, pp. 1368-1372, 2013. https://doi.org/10.3938/jkps.63.1368
  42. Roehling, J. D., Baran, D., Sit, J., Kassar, T., Ameri, T., Unruh, T., Barbec, C. J., and Moule, A. J., "Nanoscale morphology of PTB7 based organic photovoltaics as function of fullerene size", Sci. Rep., Vol. 6, pp. 30915, 2016. https://doi.org/10.1038/srep30915
  43. Nam, S., Hahm, S. G., Han, H., Seo, J., Kim, C., Kim, H., Marder, S. R., Ree, M., and Kim, Y., "All-polymer solar cells with bulk hetero -junction films containing electron-accepting triple bondconjugated perylene diimide polymer", ACS Sustainable Chem. Eng., Vol. 4, No. 3, pp. 767-774, 2016. https://doi.org/10.1021/acssuschemeng.5b00732
  44. Jeong, J., Seo, J., Nam, S., Han, H., Kim, H., Anthopoulos, T. D., Bradley, D. D. C., and Kim, Y., "Significant stability enhancement in high- efficiency polymer:fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light", Adv. Sci., Vol. 3, No. 4, pp. 1500269, 2016. https://doi.org/10.1002/advs.201500269
  45. Wan, Q., Guo, X., Wang, Z., Li, W., Guo, B., Ma, W., Zhang, M., and Li, Y., "10.8% efficiency polymer solar cells based on PTB7-Th and $PC_{71}BM$ via binary solvent additives treatment", Adv. Funct. Mater., Vol. 26, No. 36, pp. 6635-6640, 2016. https://doi.org/10.1002/adfm.201602181