DOI QR코드

DOI QR Code

Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks

  • Abdelhedi, Mohamed (Universite de Sfax Faculte des Sciences de Sfax, Route de Soukra, Departement des Sciences de la Terre) ;
  • Aloui, Monia (Universite de Sfax Faculte des Sciences de Sfax, Route de Soukra, Departement des Sciences de la Terre) ;
  • Mnif, Thameur (Universite de Sfax Faculte des Sciences de Sfax, Route de Soukra, Departement des Sciences de la Terre) ;
  • Abbes, Chedly (Universite de Sfax Faculte des Sciences de Sfax, Route de Soukra, Departement des Sciences de la Terre)
  • 투고 : 2016.07.21
  • 심사 : 2017.03.15
  • 발행 : 2017.09.25

초록

Physical and mechanical properties of rocks are of interest in many fields, including materials science, petrophysics, geophysics and geotechnical engineering. Uniaxial compressive strength UCS is one of the key mechanical properties, while density and porosity are important physical parameters for the characterization of rocks. The economic interest of carbonate rocks is very important in chemical or biological procedures and in the field of construction. Carbonate rocks exploitation depends on their quality and their physical, chemical and geotechnical characteristics. A fast, economic and reliable technique would be an evolutionary advance in the exploration of carbonate rocks. This paper discusses the ability of ultrasonic wave velocity to evaluate some mechanical and physical parameters within carbonate rocks (collected from different regions within Tunisia). The ultrasonic technique was used to establish empirical correlations allowing the estimation of UCS values, the density and the porosity of carbonate rocks. The results illustrated the behavior of ultrasonic pulse velocity as a function of the applied stress. The main output of the work is the confirmation that ultrasonic velocity can be effectively used as a simple and economical non-destructive method for a preliminary prediction of mechanical behavior and physical properties of rocks.

키워드

과제정보

연구 과제 주관 기관 : Ministere de l'Enseignement Superieur et de la Recherche Scientifique enTunisie

참고문헌

  1. Calvo, J.P. and Regueiro, M. (2010), "Carbonate rocks in the Mediterranean region-from classical to innovative uses of building stone", Geol. Soc. London Spec. Publ., 331(1), 27-35. https://doi.org/10.1144/SP331.3
  2. Chen, X., Schmitt, D.R., Kessler, J.A., Evans, J. and Kofman, R. (2015), "Empirical relations between ultrasonic P-wave velocity, porosity and Uniaxial Compressive Strength", CSEG Rec., 40(5), 24-29.
  3. Couvreur, J.F., Vervoort, A., King, M.S., Lousberg, E. and Thimus, J.F. (2001), "Successive cracking steps of a limestone highlighted by ultrasonic wave propagation", Geophys. Prpspect., 49(1), 71-78. https://doi.org/10.1046/j.1365-2478.2001.00242.x
  4. Del Rio, L.M., Jimenez, A., Lopez, F., Rosa, F.J., Rufo, M.M. and Paniagua, J.M. (2004), "Characterization and hardening of concrete with ultrasonic testing", Ultrasonics, 42(1), 527-530. https://doi.org/10.1016/j.ultras.2004.01.053
  5. Eberli, G.P., Baechle, G.T., Anselmetti, F.S. and Incze, M.L. (2003), "Factors controlling elastic properties in carbonate sediments and rocks", Leading Edge, 22(7), 654-660. https://doi.org/10.1190/1.1599691
  6. Hall, K.S. and Popovics, J.S. (2016), "Air-coupled Ultrasonic tomography of solids: 1 Fundamental development", Smart. Struct. Syst., Int. J., 17(1), 17-29. https://doi.org/10.12989/sss.2016.17.1.017
  7. Hernandez, M.G., Anaya, J.J., Izquierdo, M.A.G. and Ullate, L.G. (2002), "Application of micromechanics to the characterization of mortar by ultrasound", Ultrasonics, 40(1), 217-221. https://doi.org/10.1016/S0041-624X(02)00140-3
  8. Irfan, T.Y. (1996), "Mineralogy, fabric properties and classification of weathered granites in Hong Kong", Q. J. Eng. Geol. Hydrogeol, 29(1), 5-35. https://doi.org/10.1144/GSL.QJEGH.1996.029.P1.02
  9. Kurtulus, C., Bozkurt, A. and Endes, H. (2012), "Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey", Pure Appl. Geophys., 169(7), 1205-1215. https://doi.org/10.1007/s00024-011-0394-z
  10. Lafhaj, Z. and Goueygou, M. (2009), "Experimental study on sound and damaged mortar: Variation of ultrasonic parameters with porosity", Constr. Build Mater., 23(2), 953-958. https://doi.org/10.1016/j.conbuildmat.2008.05.012
  11. Lafhaj, Z., Goueygou, M., Djerbi, A. and Kaczmarek, M. (2006), "Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content", Cem. Concr. Res, 36(4), 625-633. https://doi.org/10.1016/j.cemconres.2005.11.009
  12. Lai, G.T., Rafek, A.G., Serasa, A.S., Hussin, A. and Ern, L.K. (2016), "Use of ultrasonic velocity travel time to estimate uniaxial compressive strength of granite and schist in Malaysia", Ssains Malays., 45(2), 185-193.
  13. Lotfi, H., Faiz, B., Moudden, A., Izbaim, D., Menou, A. and Maze, G. (2010), "Characterization of mortars with ultrasonic transducer", MJ Condensed Matter, 12(2), 131-133.
  14. Madhubabu, N., Singh, P.K., Kainthola, A., Mahanta, B., Tripathy, A. and Singh, T.N. (2016), "Prediction of compressive strength and elastic modulus of carbonate rocks", Measurement, 88, 202-213. https://doi.org/10.1016/j.measurement.2016.03.050
  15. Maev, R.G. (2008), Acoustic Microscopy: Fundamentals and Applications, John Wiley & Sons, Betz-Druck GmbH, Weinheim, Germany.
  16. Nicolas, A., Fortin, J., Regnet, J.B., Dimanov, A. and Gueguen, Y. (2016), "Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature", Geophys. J. Int., 206(3), 438-456. https://doi.org/10.1093/gji/ggw154
  17. Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using Ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, Int. J., 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059
  18. Peng, S. and Zhang, J. (2007), Engineering Geology for Underground Rocks, Springer Science & Business Media, Deblik, Berlin, Germany.
  19. Popovics, S. and Popovics, J.S. (1991), "Effect of stresses on the ultrasonic pulse velocity in concrete", Mat. Struct., 24(1), 15-23. https://doi.org/10.1007/BF02472676
  20. Popovics, S., Rose, J.L. and Popovics, J.S. (1990), "The behaviour of ultrasonic pulses in concrete", Cem. Concr. Res., 20(2), 259-270. https://doi.org/10.1016/0008-8846(90)90079-D
  21. Shariati, M., Ramli-Sulong, N.H., KH, M.M.A., Shafigh, P. and Sinaei, H. (2011), "Assessing the strength of reinforced concrete structures through ultrasonic pulse velocity and Schmidt rebound hammer tests", Sci. Res. Essays, 6(1), 213-220.
  22. Vasconcelos, G., Lourenco, P.B., Alves, C.A.S. and Pamplona, J. (2008), "Ultrasonic evaluation of the physical and mechanical properties of granites", Ultrasonics, 48(5), 453-466. https://doi.org/10.1016/j.ultras.2008.03.008
  23. Vergara, L., Miralles, R., Gosalbez, J., Juanes, F.J., Ullate, L.G., Anaya, J.J., Hernandez, M.G. and Izquierdo, M.A.G. (2001), "NDE ultrasonic methods to characterise the porosity of mortar", NDT&E INT, 34(8), 557-562. https://doi.org/10.1016/S0963-8695(01)00020-2
  24. Yasar, E. and Erdogan, Y. (2004), "Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks", Int. J. Rock Mech. Min. Sci, 41(5), 871-875. https://doi.org/10.1016/j.ijrmms.2004.01.012

피인용 문헌

  1. Ultrasonic velocity as a tool for geotechnical parameters prediction within carbonate rocks aggregates vol.13, pp.4, 2017, https://doi.org/10.1007/s12517-020-5070-0