DOI QR코드

DOI QR Code

Evaluation of Lipid Peroxidation Inhibition and Nitrogen Oxide Scavenging Activity from Peel of Gardenia jasminoides Ellis Fructus Extracted by Various Solvents

치자(Gardenia jasminoides Ellis fructus) 껍질 용매 별 추출물의 지질과산화 저해 및 질소산화물 소거능

  • Jin, Dong-Hyeok (Department of Food Science and Technology, Pusan National University) ;
  • Oh, Da-Young (Department of Food Science and Technology, Pusan National University) ;
  • Chung, Hun-Sik (Department of Food Science and Technology, Pusan National University) ;
  • Lee, Young-Guen (Department of Food Science and Technology, Pusan National University) ;
  • Seong, Jong-Hwan (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • Received : 2017.05.02
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

The aim of this study was to investigate the bioactivity and antioxidant activity of peel from Gardenia jasminoides Ellis fructus (GJE). We were separated into GJE peel. After that, we determined anthocyanin. GJE peel were extracted by 70% methanol, distilled water (DW) and ethyl acetate (EA) three solvents. To investigate by the solvent extract of total phenol content and value as a functional food ingredient of GJE peel through nitrogen oxide scavenging activity, antioxidant activity, reducing power and lipid peroxidation inhibition were performed. Solvent extract bioactivity of increasing concentrations (0.2, 0.4, 0.6 mg/mL) were significantly increased (p<0.05). GJE peel extracts showed lower activity than positive control (ascorbic acid, BHA, trolox). The total phenol contents of GJE peel extracts were highest in EA extract. However, the order of total phenol content of the solvent in the GJE peel and the results of analysis of various physiological activities were inconsistent. Considering the extraction yield and various physiological activities, it is expected to be effective when extracted from 70% methanol and DW extract. The results suggest that GJE peel is highly expected to be useful as a functional foods and natural antioxidant.

치자 껍질의 70% methanol, ethyl acetate (EA) 및 distilled water (DW)의 용매 별 추출물의 total phenol 함량 및 질소 산화물 소거능, 환원력, ${\beta}$-carotene 탈색을 이용한 항산화력 및 지질과 산화 저해능 측정을 통하여 치자의 기능성 식품 소재로서의 가치를 검토한 결과, anthocyanin 함량은 $3.519{\pm}0.635mg/100g\;DW$로 나타났으며, 용매 별 추출 수율은 DW (39.87%), 70% methanol (36.26%), EA (2.88%)로 관찰되었다. 추출 용매 별 항산화 활성은 농도(0.2, 0.4, 0.6 mg/mL)가 증가할수록 유의적으로 증가하였으며 control로 사용된 ascorbic acid, BHA, trolox 보다는 낮은 활성이 확인되었다. 치자 껍질의 total phenol 함량은 EA, 70% methanol, DW 추출물 순으로 EA 추출물에서 $26.59{\pm}0.20CAE$ (caffeic acid equivalents) mg/g으로 가장 높았으며, Nitric oxide (NO) radical 소거능에서는 70% methanol (70.32~76.15%), DW (52.66~59.31%), EA (34.65~46.98%) 추출물 순으로 나타났다. Nitrite ($NO_2$) 소거능은 70% methanol (34.57~39.33%), DW (32.53~38.47%), EA (27.59~32.62%) 순으로 관찰되었다. ${\beta}$-carotene 탈색 저해능은 DW (41.55~50.97%), 70% methanol (23.37~44.80%), EA (13.37~25.24%) 순으로 동정되었다. Reducing power (optical density)는 70% methanol (0.044~0.127), DW (0.033~0.099), EA (0.026~0.097) 순으로 확인되었다. 지질과산화 저해능은 껍질 추출물 중 70% methanol (56.51~76.21%), EA (54.59~63.34%), DW (47.92~61.11%) 순으로 관찰되었다(p<0.05). 이에, 치자 껍질은 기능성 식품 및 천연 항산화제로서의 가치가 매우 높을 것으로 판단된다.

Keywords

References

  1. J. Kearney, "Food consumption trends and drivers", Philosoph. Transact. Royal Soc. B: Biol. Sci., Vol.365, No.1554 pp.2793-2807 (2010). https://doi.org/10.1098/rstb.2010.0149
  2. K. Menrad, "Market and marketing of functional food in Europe", J. Food Eng., Vol.56, No.2 pp.181-188 (2003). https://doi.org/10.1016/S0260-8774(02)00247-9
  3. B. Halliwell, J. M. Gutteridge and C. E. Cross, "Free radicals, antioxidants, and human disease: where are we now?", J. Lab. Clinic. Med., Vol.119, No.6 pp.598-620 (1992).
  4. N. Hogg, V. M. Darley-Usmar, M. T. Wilson and S. Moncada, "Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide". Biochemical Journal, Vol.281, No.2 pp.419-424 (1992). https://doi.org/10.1042/bj2810419
  5. J. S. Hwang, B. H. Lee, X. An, H. R. Jeong, Y. E. Kim, I. Lee, H. Lee and D. O. Kim, "Total phenolics, total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots of Allium hookeri", Korean J. Food Sci. Technol., Vol.47, No.2 pp.261-266 (2015). https://doi.org/10.9721/KJFST.2015.47.2.261
  6. H. O. Edeoga, D. E. Okwu and B. O. Mbaebie, "Phytochemical constituents of some Nigerian medicinal plants", African J. Biotechnol., Vol.4, No.7 pp.685-688 (2005). https://doi.org/10.5897/AJB2005.000-3127
  7. I. A. Lee, J. H. Lee, N. I. Baek and D. H. Kim, "Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin", Biol. Pharm. Bull., Vol.28, No.11 pp.2106-2110 (2005). https://doi.org/10.1248/bpb.28.2106
  8. D. H. Jin, H. S. Kim, J. H. Seong and H. S. Chung, "Comparison of total phenol, flavonoid contents, and antioxidant activities of Orostachys japonicus A. Berger extracts", J. Environ. Sci. Int., Vol.25, No.5 pp.695-703 (2016). https://doi.org/10.5322/JESI.2016.25.5.695
  9. T. Fuleki and F. J. Francis, "Quantitative methods for anthocyanins", J. Food Sci., Vol.33, No.3 pp.266-274 (1968). https://doi.org/10.1111/j.1365-2621.1968.tb01365.x
  10. T. Sun and C. T. Ho, "Antioxidant activities of buckwheat extracts", Food Chem., Vol.90, No.4 pp.743-749 (2005). https://doi.org/10.1016/j.foodchem.2004.04.035
  11. M. N. A. Rao, "Nitric oxide scavenging by curcuminoids", J. Pharm. Pharmacol., Vol.49, No.1 pp.105-107 (1997). https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
  12. J. A. Lim, Y. S. Na and S. H. Baek, "Antioxidative activity and nitrite scavenging ability of ethanol extract from Phyllostachys bambusoides", Korean J. Food Sci. Technol., Vol.36, No.2 pp.306-310 (2004).
  13. S. Kato, H. Aoshima, Y. Saitoh and N. Miwa, "Highly hydroxylated or $\gamma$-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and $\beta$-carotene bleaching assay", Bioorg. Med. Chem. Lett., Vol.19, No.18 pp.5293-5296 (2009). https://doi.org/10.1016/j.bmcl.2009.07.149
  14. M. Singhal, A. Paul and H. P. Singh, "Synthesis and reducing power assay of methyl semicarbazone derivatives", J. Saudi Chem. Soc., Vol.18, No.2 pp.121-127 (2014). https://doi.org/10.1016/j.jscs.2011.06.004
  15. N. Siriwardhana, K. W. Lee, Y. J. Jeon, S. H. Kim and J. W. Haw, "Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition", Food Sci. Technol. Int., Vol.9, No.5 pp.339-346 (2003). https://doi.org/10.1177/1082013203039014
  16. T. A. Holton and E. C. Cornish, "Genetics and biochemistry of anthocyanin biosynthesis", The Plant Cell, Vol.7, No.7 pp.1071 (1995). https://doi.org/10.1105/tpc.7.7.1071
  17. Z. Lin, J. Fischer and L. Wicker, "Intermolecular binding of blueberry pectin-rich fractions and anthocyanin", Food Chem., Vol.194, pp.986-993 (2016). https://doi.org/10.1016/j.foodchem.2015.08.113
  18. A. Sgambato, R. Ardito, B. Faraglia, A. Boninsegna, F. I. Wolf and A. Cittadini, "Resveratrol, a natural phenolic compound, inhibits cell proliferation and prevents oxidative DNA damage", Mutat. Res. Genet. Toxicol. Environ. Mutagen., Vol.496, No.1 pp.171-180 (2001). https://doi.org/10.1016/S1383-5718(01)00232-7
  19. Y. Cai, Q. Luo, M. Sun and H. Corke, "Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer", Life Sci., Vol.74, No.17 pp.2157-2184 (2004). https://doi.org/10.1016/j.lfs.2003.09.047
  20. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. "Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay", Free Radical Biol. Med., Vol.26, No.9 pp.1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  21. S. R. M. J. Moncada, R. M. L. Palmer and E. Higgs, "Nitric oxide: physiology, pathophysiology, and pharmacology", Pharmacol. Rev., Vol.43, No.2 pp.109-142 (1991).
  22. S. H. Snyder and D. S. Bredt, "Biological roles of nitric oxide", Sci. American, Vol.266, No.5 pp.68-77 (1992). https://doi.org/10.1038/scientificamerican0592-68
  23. H. Moshage, B. Kok, J. R., Huizenga and P. L. Jansen, "Nitrite and nitrate determinations in plasma: a critical evaluation", Clin. Chem., Vol.41, No.6 pp.892-896 (1995).
  24. D. Pastore, D. Trono, L. Padalino, S. Simone, D. Valenti, N. Di Fonzo and S. Passarella, "Inhibition by $\alpha$-tocopherol and L-ascorbate of linoleate hydroperoxidation and ${\beta}$-carotene bleaching activities in durum wheat semolina", J. Cereal Sci., Vol.31, No.1 pp.41-54 (2000). https://doi.org/10.1006/jcrs.1999.0278
  25. M. Senevirathne, S. H. Kim, N. Siriwardhana, J. H. Ha, K. W. Lee and Y. J. Jeon, "Antioxidant potential of ecklonia cavaon reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition", Food Sci. Technol. Int., Vol.12, No.1 pp.27-38 (2006). https://doi.org/10.1177/1082013206062422
  26. O. Firuzi, A. Lacanna, R. Petrucci, G. Marrosu and L. Saso, "Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry", Biochim. Biophys. Acta-Gen. Subj., Vol.1721, No.1 pp.174-184 (2005). https://doi.org/10.1016/j.bbagen.2004.11.001
  27. E. N. Frankel, "Lipid oxidation", Prog. Lipid Res., Vol.19, No.1 pp.1-22 (1980). https://doi.org/10.1016/0163-7827(80)90006-5
  28. Y. Yamamoto, M. H. Brodsky, J. C. Baker and B. N. Ames, "Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography", Anal. Biochem., Vol.160, No.1 pp.7-13 (1987). https://doi.org/10.1016/0003-2697(87)90606-3
  29. H. Esterbauer, "Cytotoxicity and genotoxicity of lipid-oxidation products", American J. Clin. Nutr., Vol.57, No.5 pp.779S-785S (1993). https://doi.org/10.1093/ajcn/57.5.779S