DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory activity of extracts from kohlrabi (Brassica Oleracea var. Gonglodes)

콜라비 추출물의 항산화 및 항염 효능

  • Yi, Mi-Ran (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Kang, Chang-Hee (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Bu, Hee-Jung (Biotechnology Regional Innovation Center, Jeju National University)
  • 이미란 (제주대학교 생명과학기술혁신센터) ;
  • 강창희 (제주대학교 생명과학기술혁신센터) ;
  • 부희정 (제주대학교 생명과학기술혁신센터)
  • Received : 2017.05.24
  • Accepted : 2017.06.14
  • Published : 2017.06.30

Abstract

This study was designed to examine the in vitro antioxidant and anti-inflammatory effects of kohlrabi (Brassica oleracea var. gonglodes) extract. Kohlrabi was extracted using 70% ethanol and then fractionated sequentially with n-hexane, ethyl acetate and butanol. Antioxidative ability was evaluated by bioassays using total polyphenol contents and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid diammonium salt) radical scavenging activity. Ethyl acetate fraction of kohlrabi was best on total polyphenol contents ($27.33{\pm}0.26mg\;GAE/g$) and ABTS radical scavenging effects ($IC_{50}\;172.9{\pm}1.6{\mu}g/mL$).For the anti-inflammatory activity in RAW 264.7 cells, the EtOAc fraction showed the highest inflammatory effect. Dose response studies were performed to determine the inhibitory effect of EtOAc fraction of kohlrabi on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The EtOAc fraction of kohlrabi inhibited the NO and $PGE_2$ production and the protein level of iNOS and COX-2, and protein expression of pro-inflammatory cytokines (TNF-${\alpha}$, IL-6 and IL-$1{\beta}$), in a dose-dependent manner. These results suggest that kohlrabi has considerable potential as a ingredient with antioxidative and anti-inflammatory effects.

본연구는 콜라비 추출물의 항산화 및 항염 효능을 조사하기 위하여 수행하였다. 콜라비는 70% 에탄올을 이용하여 조추출한 후 헥산, 에틸아세테이트, 부탄올을 이용하여 용매 극성에 따라 순차적으로 분획하였다. 항산화 활성은 총폴리페놀 함량 측정과 ABTS 라디칼 소거활성을 측정하여 평가하였다. 에틸아세테이트 분획물이 총폴리페놀 함량($27.33{\pm}0.26mg\;GAE/g$)과 ABTS 라디칼 소거활성($IC_{50}\;172.9{\pm}1.6{\mu}g/mL$)이 가장 높게 측정되었다. 항염 활성은 RAW 264.7 세포를 이용하였으며, 에틸아세테이트 분획물이 가장 높은 항염 활성을 보였다. 에틸아세테이트 분획물의 LPS로 유도된 RAW 264.7 세포에서 전염증성 매개인자들에 대한 저해효과를 농도별로 측정하여 확인하였다. 콜라비 에틸아세테이트 분획물은 NO, $PGE_2$ 생성과 iNOS와 COX-2 및 TNF-${\alpha}$, IL-6, IL-$1{\beta}$와 같은 전염증성 사이토카인들의 단백질 발현을 농도의존적으로 저해하였다. 이러한 결과들은 콜라비가 항산화 및 항염 효능을 가지는 소재로서의 개발 가능성이 있음을 시사한다.

Keywords

References

  1. J. Nordberg and E. S. J. Arner, Reactive Oxygen species, antioxidants, and the mammallan thioredoxin system. Free Radical Biology & Medicine, 31(11), 1287 (2001). https://doi.org/10.1016/S0891-5849(01)00724-9
  2. Y. Duan, G. H. Kim, J. H. Seong, H. S. Chung, and H. S. Kim, Antioxidant activities of n-butanol and ethyl acetate extracts from Yam (Dioscorea batatas Decne). J. of Korean oil Chemists' Soc, 32(4), 599 (2015). https://doi.org/10.12925/jkocs.2015.32.4.599
  3. E. A. Decker, A. D. Crum, and J. T. Calvert, Differences in the antioxidant mechanism of carmosine in the prescence of copper and iron. J. Agr. Food Chem, 40, 756 (1992). https://doi.org/10.1021/jf00017a009
  4. S. I. Jeong, H. S. Kim, I. H. Jeon, H. J. Kang, J. Y. Mok, C. J. Cheon, H. H. Yu, and S. I. Jang, Antioxidant and anti-inflammatory effects of ethanol extracts from Perilla frutescens. Korean J. Food Sci. Technol, 46, 87 (2014). https://doi.org/10.9721/KJFST.2014.46.1.87
  5. S. H. You and J. S. Moon, A study on anti-oxidative, anti-inflammatory, and melanin inhibitory effects of chrysanthemum sibiricum extract. J. of Koreac Oil Chemists's Soc, 33(4), 762 (2016). https://doi.org/10.12925/jkocs.2016.33.4.762
  6. S. S. Chang, B. O. Matatijasevic, O. A. L. Hsieh, and C. H. Hwang, Natural antioxidants rosemary and sage. J. Food Sci, 42, 1102, (1977). https://doi.org/10.1111/j.1365-2621.1977.tb12676.x
  7. E. Schafer and L. Arnrich, Effects of dietary vitamin E on serum and pulmonary fatty acid as prostaglandins in rats fed excess linoleic acid. J. Nutr, 144, 1130 (1984).
  8. J. H. Ryu, H. Ahn, J. Y. Kim, and Y. K. Kim, Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res, 17, 485 (2003). https://doi.org/10.1002/ptr.1180
  9. W. J. Yoon, J. A. Lee, K. N. Kim, J. Y. Kim, and S. Y. Park, In vitro anti-inflammatory activity of the Artemisia fukudo extracts in murine macrophage RAW 264.7. Korean J Food Sci Technol, 39, 464 (2007).
  10. T. Yayeh, H. Jung, H. Y. Jeong, J. H. Park, Y. B. Song, Y. S. Kwak, H. S. Kang, J. Y. Cho, J. W. Oh, S. K. Kim, and M. H. Rhee, Korean red ginseng saponin fraction downregulates proinfl ammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J. Ginseng Res, 36, 263 (2012). https://doi.org/10.5142/jgr.2012.36.3.263
  11. S. H. Oh, S. Y. Choi, N. R. Lee, J. N. Lee, D. S. Kim, S. H. Lee, and S. M. Park, Cell migration and anti-inflammatory effect of red ginseng extracts fermented with laetiporus sulphureus. J. Soc. Cosmet. Scientists Korea, 40, 297 (2014). https://doi.org/10.15230/SCSK.2014.40.3.297
  12. V. Willeaume, V. Kryus, T. Mijatovic, and G. Huez, Tummor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. Journal of Inflammation, 46, 1 (1996).
  13. D. Hwang, B. C. Jang, G. Yu, and B. Mary, Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide. Biochem. Pharmacol, 54, 87 (1997). https://doi.org/10.1016/S0006-2952(97)00154-8
  14. J. Y. Kim, K. S. Jung, and H. G. Jeong, Suppressive effects of the kaweol and cafestol on cyclooxygenase-2 expression in macrophases. FEBS Lett, 569, 321 (2004). https://doi.org/10.1016/j.febslet.2004.05.070
  15. J. H. Ryu, H. Ahn, J. Y. Kim, and Y. K. Kim, Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res, 17, 485 (2003). https://doi.org/10.1002/ptr.1180
  16. M. M. Mu, D. Chakravortty, T. Sugiyama, N. Koide, K. Takahashi, I. Mori, T. Yoshida, and T. Yokochi, The inhibitory action of quercetin on lipopolysaccharideinduced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin. Res,7, 431 (2001). https://doi.org/10.1177/09680519010070060601
  17. M. E. Assar and J. Angulo, Oxidative stress and vascular inflammation in aging. Free Radic. Biol. Med, 65, 380 (2013). https://doi.org/10.1016/j.freeradbiomed.2013.07.003
  18. R. Dubois, S. B. Abramson, L. Crofford, R. A. Gupta, L. S. Simon, L. B. A Van De Putte, and P. E. Lipsky, Cyclooxygenase in biology and disease. FASEB J, 9, 2045 (1998).
  19. W. L. Smith, G. R. Michael, and D. L. De-Witt, Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and 2. J. Biol. Chem, 271, 33157 (1996). https://doi.org/10.1074/jbc.271.52.33157
  20. S. K. Chang, W. C. Hyun, J. H. Kim, Y. J. Ko, S. M. Song, M. H. Ko, J. C. Lee, C. S. Kim, and W. J. Yoon, Anti-inflammatory effects on 80% ethanol extract and ethyl acetate fraction of Acrosorium yendoi Yamada in murin macrophage RAW 264.7 cells. Korean J. Plant Res, 28, 574 (2015). https://doi.org/10.7732/kjpr.2015.28.5.574
  21. D. B. Kim, J. W. Oh, J. S. Lee, I. J. Park, J. H. Cho, and O. H. Lee, Antioxidant activities of Green and Purple Kohlrabi Juices. Korean J. Food. Sci. Technol, 46, 601 (2014). https://doi.org/10.9721/KJFST.2014.46.5.601
  22. M. J. Yang, S. S. Cha, and J. J. Lee, Effects of purple kohlrabi (Brassica olercea var. gongylodes) flesh and peel ethanol extracts on the antioxidant activity and antiproliferation of human cancer cells. Korean J Comunity Living Sci, 26, 405 (2015). https://doi.org/10.7856/kjcls.2015.26.2.405
  23. J. W. Lee, D. Y. Lee, J. G. Cho, N. I. Baek, and Y. H. Lee, Isolation and identification of sterol compounds from the red kohlrabi (Brassica oleracea var. gongylodes) sprouts. J. Appl. Biol. Chem, 53, 207 (2010). https://doi.org/10.3839/jabc.2010.037
  24. Y. J. Lee, J. H. Kim, J. W. Oh, G. H. Shin, J. S. Lee, J. H. Cho, J. J. Park, J. H. Lim, and O. H. Lee, Antioxidant and anti-adipogenic effects of kohlrabi and radish sprout extracts. Korean J. Food Sci. Technol, 46, 531 (2014). https://doi.org/10.9721/KJFST.2014.46.5.531
  25. Q. Zhang, J. Zhang, J. Shen, A. Silva, D. Dennis, and C. J. Barrow, A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol, 18, 445 (2006). https://doi.org/10.1007/s10811-006-9048-4
  26. R. Roberta, P. Nicoletta, P. Anna, P. Anath, Y. Min, and R. E. Catherine, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol. Med, 26, 1231 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  27. H. J. Chei, H. J. Lee, B. G. Shin, I. C. Lee, and J. S. Hwang, Deoxypodophyllotoxin reduces skin pigmentation of brown guinea pigs. Planta Medica, 70, 378 (2004). https://doi.org/10.1055/s-2004-818955
  28. C. Giovannini, B. Scazzocchio, R. Vari, C. Santangelo, M. D'Archivo, and R. Masella, Apoptosis in cancer and atherosclerosis: polyphenol activities. Ann Ist Super Sanita, 43, 406 (2007).
  29. A. L. Jeon, J. E. Kim and N. H. Lee, Whitening and anti-inflammatory constituents from the extract of Citrullus lanatus vines. J. Soc. Cosmet. Sci. Korea, 43(1), 53 (2017). https://doi.org/10.15230/SCSK.2017.43.1.53
  30. C. S. Ko, W. C. Hyun, J. H. Kim, Y. J. Ko. S. M. Song, M. H. Ko, J. C. Lee, C. S. Kim and W. J. Yoon, Anti-inflammatory effects on 80% ethanol extract and ethyl acetate fraction of Acrosorium yendoi Yamada in murine macrophage raw 264.7 cells. Korean J. Plant Res. 28(5), 574 (2015). https://doi.org/10.7732/kjpr.2015.28.5.574
  31. Y. Tezuka, S. Irikawa, T. Kaneko, A. H. Banskota, T. Nagaoka, Q. Xiong, K. Hase, S. Kadota, Screening of Chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylumbugeanum. J. Ethnopharmacol, 77, 209 (2001). https://doi.org/10.1016/S0378-8741(01)00300-2
  32. R. G Kim, K. M. Shin, S. K. Chun, S. Y. Ji, S. H. Seo, H. J. Park, J. W. Choi, K. T. Lee, In vitro anti-inflammatory activity of the essential oil from Ligularia fischeri var. spiciformis in murine macrophage RAW 264.7 cells. Yakhak Hoeji, 46, 343 (2002).