DOI QR코드

DOI QR Code

Preparation of superhydrophilic coating solutions containing fluorosurfactants and characterization of their antifogging and antifouling properties

불소계면활성제를 함유한 초친수 코팅액의 제조 및 방담 방오 특성

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Im, Sun Moon (Department of Chemical Engineering, Changwon National University) ;
  • Hwang, Heon (Department of Bio-Mechatronics Engineering, Sungkyunkwan University)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 임선문 (창원대학교 화공시스템공학과) ;
  • 황헌 (성균관대학교 생명공학부 바이오메카트로닉스전공)
  • Received : 2017.08.10
  • Accepted : 2017.09.03
  • Published : 2017.09.30

Abstract

In order to produce hydrophilic coating solution, which has superior antifogging and antifouling effect on the glass surface of solar cell module as well as improving photovoltaic efficiency, nanosilica was dispersed in an aqueous solution of Tween 20 and fluorosurfactant composed of decafluorobutane and polyethylene glycol. The antifogging effect at high temperature was excellent for all the coating solutions containing nanosilica, but the antifouling effect was observed when the content of nanosilica was over 6 wt%. As the content of fluorosurfactant increased, the initial water contact angle slightly increased and the antifogging effect remained well until 500 wiping with wet $Wipeol^{(R)}$. The antifouling effect was also excellent regardless of the content of fluorosurfactant, thus 0.1 wt% of the fluorosurfactant was enough for a coating solution production. From the AFM results, when 0.1 wt% to 0.3 wt% of the fluoro surfactant was added, the fractal structure of the coated glass surface was clearly existed and contributed to the better antifouling effect. The transmittance of coated glass surface was highest in TL-1 coating solution containing 0.1 wt% of fluorosurfactant, and the addition of fluorosurfactant in a larger amount than 0.1 wt% did not improve the transmittance. This result is in good agreement with the previous AFM result which shows a high surface roughness as well as a fractal structure formation for the TL-1 coating solution.

내열성이 우수하며, 태양광 모듈의 유리 표면에 방담성(antifogging) 및 방오성(antifouling)을 동시에 부여하여 효율을 향상시키기 위한 친수성 코팅액을 제조하기 위해 초친수성과 우수한 방담효과를 나타내는 Tween 20과 데카플루오로부탄과 폴리에틸렌글리콜 성분으로 구성된 불소계면활성제 수용액에 방오성 부여를 위하여 나노실리카를 분산하였다. 고온 처리에서 나노실리카의 함량에 따른 방담 효과는 모든 코팅액이 우수하였으나, 방오 효과는 나노실리카의 함량이 6 wt%일 때부터 나타났다. 불소계면활성제의 함량이 증가할수록 초기 접촉각이 증가하며 방담 효과도 500회 wiping까지 잘 유지되었다. 방오 효과 역시 불소계면활성제의 함량에 상관없이 우수하여 불소계면활성제의 적절한 첨가량은 0.1 wt%이상 이면 충분하였다. AFM 결과로부터 불소계면활성제가 0.1 wt%에서 0.3 wt%가 첨가된 경우 코팅 표면의 프랙탈구조가 확실히 나타나 방오성 향상에 기여하였다. 코팅된 유리의 투과도는 불소계면활성제가 0.1 wt% 첨가된 TL-1의 경우가 가장 높았으며 더 많은 양의 불소계면활성제를 첨가할 경우 오히려 투과도 향상은 미미하였다. 이러한 결과는 앞의 AFM 결과에서 나타난 표면 조도가 높으며 프랙탈구조 형성도 잘 일어난 TL-1 코팅액의 결과와 잘 일치하는 것이다.

Keywords

References

  1. J. Fang, B. Yan, T. Li, C. Wei, K. Zhang, B. Li, Q. Huang, X. Chen, G. Hou, G. Wang, Y. Zhao, and X. Zhang, "Substrate effect on ultrathin hydrogenated amorphous silicon solar cells", Solar Energy Materials and Solar Cells, 171, 222-227 (2017). https://doi.org/10.1016/j.solmat.2017.06.065
  2. H. Hanaei, M. K. Assadim, and R. Saidur, "Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review", Renew. and Sustain. Energy Rev., 59, 620-635 (2016). https://doi.org/10.1016/j.rser.2016.01.017
  3. C. Yang, S. H. Ryu, W. J. Yoo, D. H. Kim, and T. Kim, "Improvement of Si solar cell efficiency by using surface treatments on the antireflection coating layers and electrodes", Kor. Institute of Surf. Eng., 5, 202-203 (2009).
  4. C. B. KIm, "The study on the reflection coating design scheme in the thin-film silicon solar cell", Kor. Academia- Industrial, 12(11), 5172-5177 (2011). https://doi.org/10.5762/KAIS.2011.12.11.5172
  5. D. C. Woo, C. Y. Koo, H. C. Ma, and H. Y. Lee, "Characterization of sol-gel derived antimony-doped tin oxide thin films for transparent conductive oxide application", Trans. on Elect. and Elecronic Mat., 13(5), 241-244 (2012). https://doi.org/10.4313/TEEM.2012.13.5.241
  6. R. Nistico, D. Scalarone, and G. Magnacca, "Sol-gel chemistry, templating and spin-coating deposition: A combine approach to control in a simple way the porosity of inorganic thin films/coatings", Microporous and Mesoporous Mat., 248, 18-29 (2017). https://doi.org/10.1016/j.micromeso.2017.04.017
  7. C. Hen, M. Wu, C. Hsu, and J. Huang, Antireflection coating of $SiO_2$ thin film in dye-sensitized solar cell prepared by liquid phase deposition, Surf. Coatings Technol., 320, 28-33 (2017). https://doi.org/10.1016/j.surfcoat.2017.02.015
  8. B. Du, R. Yang, Y. He, F. Wang, and S. Huang, "Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview", Renew. and Sustain. Energy Rev., 78, 1117-1151 (2017). https://doi.org/10.1016/j.rser.2017.05.017
  9. H. Kim, Y. Kim, and J. Choi, "Preparation of the anti-reflective coating film by sol-gel method to improve the efficiency of solar cell", Trans. Kor. Hydrogen and New Energy Soc., 25(2), 145-150 (2014). https://doi.org/10.7316/KHNES.2014.25.2.145
  10. E. Jurado, O. H. Marquez, A. P. Quevedo, and J. M. Vicaria, "Interaction between non-ionic surfactants and silica micro/nanoparticles. Influence on the cleaning of dried starch on steel surfaces", J. Ind. and Eng. Chem., 21, 1383-1388 (2015). https://doi.org/10.1016/j.jiec.2014.06.011
  11. C. S. Cho, J. H. Oh, B. L. Lee, and B. H. Kim, "Silicon solar cell efficiency improvement with surface damage removal etching and antireflection coating process", J. The Semicoductor & Display Tech., 13(2), 29-35 (2014).
  12. Y. Yuan, R. Liu, C. Wang, J. Luo, and X. Liu, "Synthesis of UV-curable acrylate polymer containing sulfonic groups for anti-fog coatings", Progress in Organic Coatings, 77, 785-789 (2014). https://doi.org/10.1016/j.porgcoat.2014.01.001
  13. J. K. Park, K. C. Song, H. U. Kang, and S. H. Kim, "Preparation of hydrophilic coating film using GPS(Glycidoxypropyl TrimethoxySilane)", Kor. Chem. Eng. Res., 40(6), 735-740 (2002).
  14. B. Lin, and S. Zhou, "Poly(ethylene glycol)-grafted silica nanoparticles for highly hydrophilic acrylic-based polyurethane coatings", Progress in Oranic coatings, 106, 145-154 (2017). https://doi.org/10.1016/j.porgcoat.2017.02.008
  15. Z. Wang, and S. Lin, "The impact of low-surface-energy functional groups on oil fouling resistance in membrane distillation", J. Membrane Sci., 527, 68-77 (2017). https://doi.org/10.1016/j.memsci.2016.12.063
  16. X. Yang, L. Zhu, Y. Chen, B. Bao, J. Xu, and W. Zhou, "Preparation and characterization of hydrophilic silicon dioxide film on acrylate polyurethane coatings with self-cleaning ability", Appl. Surf. Sci., 349, 916-923 (2015). https://doi.org/10.1016/j.apsusc.2015.05.007
  17. Y. Li, C. Chen, M. Wang, W. Li, Y. Wang, L. Jiao, and H. Yuan, "Excellent sodium storage performance of carbon-coated TiO2: Assisted with electrostatic interaction of surfactants", J. Power Sources, 361, 326-333 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.076
  18. N. M. Kovalchuk, A Trybala, V. Starov, O. Matar, and N. Ivanova, "Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?", Advances in Colloid and Interface Sci., 210, 65-71 (2014). https://doi.org/10.1016/j.cis.2014.04.003
  19. Q. Liu, M. Ono, Z. Tang, R. Ishikawa, and K. Ueno, "Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells", Appl. Phys. Lett., 100, 183901-183904 (2012). https://doi.org/10.1063/1.4709615
  20. US 5209850 A, Hydrophilic membranes (1993).
  21. C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angilè, C. H. J. Schmitz, S. Köster, H. Duan, K. J. Humphry. R. A. Scang. J. S. Johnson, D. Pisignano, and D. A. Weitz, "Biocompatible surfactants for water-in-fluorocarbon emulsions", Lab Chip, 8, 1632-1639 (2008). https://doi.org/10.1039/b806706f
  22. D. K. Kim, M. S. Cha, J. E. Lee, K. W. Lee, and S. B. Lee, "Surface properties of water-repellency coating films and their durability effects", J. Appl. Chem., 5(1), 76-79 (2001).