참고문헌
- Research, P. M. 2014. Persistence Market Research: Global Nano-enabled Packaging Market to Reach US$15.0 Billion by 2020; http://www.businesswire.com/news/home/20150109 005497/en/Persistence-Market-Research-Global-Nano-enabled-Packaging-Market
- Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid Interface Science 363: 1-24. https://doi.org/10.1016/j.jcis.2011.07.017
- Paralikar, S. A., Simonsen, J. and Lombardi, J. 2008. Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science 320: 248-258. https://doi.org/10.1016/j.memsci.2008.04.009
- Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R. and Watkins, R. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants 25: 241-258. https://doi.org/10.1080/02652030701744538
- Handford, C. E., Dean, M., Henchion, M., Spence, M., Elliott, C. T. and Campbell, K. 2014. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends in Food Science & Technology 40: 226-241. https://doi.org/10.1016/j.tifs.2014.09.007
- Silvestre, C., Duraccio, D., and Cimmino, S. 2011. Food packaging based on polymer nanomaterials. Progress in Polymer Science 36: 1766-1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003
- Mohanty, A. K., Misra, M. and Nalwa, H. S. 2009. Packaging nanotechnology. American Scientific Publishers 2009.
- Rubilar, O., Diez, M., Tortella, G., Briceno, G., Marcato, P. and Duran, N. 2014. New strategies and challenges for nanobiotechnology in agriculture. Journal of Biobased Materials and Bioenergy 8: 1-12. https://doi.org/10.1166/jbmb.2014.1407
- Kim, S. W. and Cha, S. H. 2014. Thermal, mechanical, and gas barrier properties of ethylene-vinyl alcohol copolymerbased nanocomposites for food packaging films: Effects of nanoclay loading. Journal of Applied Polymer Science 131.
- Cho, T. W. and Kim, S. W. 2011. Morphologies and properties of nanocomposite films based on a biodegradable poly (ester) urethane elastomer. Journal of Applied Polymer Science 121: 1622-1630. https://doi.org/10.1002/app.33766
- Sarsar, V., Selwal, K. K., and Selwal, M. K. 2014. Nanosilver: potent antimicrobial agent and its biosynthesis. African Journal of Biotechnology 13.
- Espitia, P. J. P., Soares, N. d. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S. and Medeiros, E. A. A. 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology 5: 1447-1464. https://doi.org/10.1007/s11947-012-0797-6
-
Macwan, D., Dave, P. N., and Chaturvedi, S. 2011. A review on nano-
$TiO_2$ sol-gel type syntheses and its applications. Journal of Materials Science 46: 3669-3686. https://doi.org/10.1007/s10853-011-5378-y - Zhang, W., Zhu, Z., and Cheng, C. Y. 2011. A literature review of titanium metallurgical processes. Hydrometallurgy 108: 177-188. https://doi.org/10.1016/j.hydromet.2011.04.005
- Peters, R. J., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P., Marvin, H. J., Weigel, S., Tromp, P. C., Oomen, A. G., Rietveld, A. G., and Bouwmeester, H. 2014. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry 62: 6285-6293. https://doi.org/10.1021/jf5011885
- Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews 95: 69-96. https://doi.org/10.1021/cr00033a004
-
Othman, S. H., Abd Salam, N. R., Zainal, N., Kadir Basha, R., and Talib, R. A. 2014. Antimicrobial activity of
$TiO_2$ nanoparticle- coated film for potential food packaging applications. International Journal of Photoenergy 2014. -
Siddiquey, I. A., Ukaji, E., Furusawa, T., Sato, M., and Suzuki, N. 2007. The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of
$TiO_2$ . Materials Chemistry and Physics 105: 162-168. https://doi.org/10.1016/j.matchemphys.2007.04.017 - Guo, G., Shi, Q., Luo, Y., Fan, R., Zhou, L., Qian, Z., and Yu, J. 2014. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives. Nanoscale Research Letters 9: 1-9. https://doi.org/10.1186/1556-276X-9-1
-
Diaz-Visurraga, J., Melendrez, M., Garcia, A., Paulraj, M., and Cardenas, G. 2010. Semitransparent chitosan-
$TiO_2$ nanotubes composite film for food package applications. Journal of Applied Polymer Science 116: 3503-3515. -
Sabzi, M., Mirabedini, S., Zohuriaan-Mehr, J., and Atai, M. 2009. Surface modification of
$TiO_2$ nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings 65: 222-228. https://doi.org/10.1016/j.porgcoat.2008.11.006 - ASTM D6603. 2012. Standard Specification for Labeling of UV-Protective Textiles.
- ASTM D882. 2012. Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
- ASTM D1746. 2015. Standard Test Method for Transparency of Plastic Sheeting.
- Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., and Miraki, R. 2013. Reducing water sensitivity of alginate bionanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules 54: 166-173. https://doi.org/10.1016/j.ijbiomac.2012.12.016
- De Rosa, C., Auriemma, F., Corradini, P., Tarallo, O., Dello Iacono, S., Ciaccia, E., and Resconi, L. 2006. Crystal structure of the trigonal form of isotactic polypropylene as an example of density-driven polymer structure. Journal of the American Chemical Society 128: 80-81. https://doi.org/10.1021/ja0572957
-
You, T., Jiang, L., Han, K.-L., and Deng, W.-Q. 2013. Improving the performance of quantum dot-sensitized solar cells by using
$TiO_2$ nanosheets with exposed highly reactive facets. Nanotechnology 24: 245401. https://doi.org/10.1088/0957-4484/24/24/245401 -
Asghar, W., Qazi, I. A., Ilyas, H., Khan, A. A., Awan, M. A., and Aslam, M. R. 2011. Comparative solid phase photocatalytic degradation of polythene films with doped and undoped
$TiO_2$ nanoparticles. Journal of Nanomaterials 2011: 12. - Amalraj, A. and Pius, A. 2014. Photocatalytic Degradation of Alizarin Red S and Bismarck Brown R Using TiO.
-
Seentrakoon, B., Junhasavasdikul, B., and Chavasiri, W. 2013. Enhanced UV-protection and antibacterial properties of natural rubber/rutile-
$TiO_2$ nanocomposites. Polymer Degradation and stability 98: 566-578. https://doi.org/10.1016/j.polymdegradstab.2012.11.018 -
Popov, A. P., Lademann, J. r., Priezzhev, A. V., and MyllylA, R. 2005. Effect of size of
$TiO_2$ nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. Journal of Biomedical Optics 10: 064037-064037-9. -
Zhou, J., Wang, S., and Gunasekaran, S. 2009. Preparation and characterization of whey protein film incorporated with
$TiO_2$ nanoparticles. Journal of Food Science 74: N50-N56. https://doi.org/10.1111/j.1750-3841.2009.01270.x -
Nguyen, V. G., Thai, H., Mai, D. H., Tran, H. T., and Vu, M. T. 2013. Effect of titanium dioxide on the properties of polyethylene/
$TiO_2$ nanocomposites. Composites Part B: Engineering 45: 1192-1198. https://doi.org/10.1016/j.compositesb.2012.09.058 -
Bikiaris, D. N., Papageorgiou, G. Z., Pavlidou, E., Vouroutzis, N., Palatzoglou, P., and Karayannidis, G. P. 2006. Preparation by melt mixing and characterization of isotactic polypropylene/
$SiO_2$ nanocomposites containing untreated and surfacetreated nanoparticles. Journal of Applied Polymer Science 100: 2684-2696. https://doi.org/10.1002/app.22849 - Seo, J., Jeon, G., Jang, E. S., Bahadar Khan, S. and Han, H. 2011. Preparation and properties of poly (propylene carbonate) and nanosized ZnO composite films for packaging applications. Journal of Applied Polymer Science 122: 1101-1108. https://doi.org/10.1002/app.34248