DOI QR코드

DOI QR Code

CHOOSING REGULARIZATION PARAMETER BY GLOBAL L-CURVE CRITERION

  • Oh, SeYoung (Department of Mathematics Chungnam National University) ;
  • Kwon, SunJoo (Innovation Center of Engineering Education Chungnam National University)
  • Received : 2016.12.15
  • Accepted : 2017.01.09
  • Published : 2017.02.15

Abstract

As an efficient way to determine the regularization parameter in the discrete ill-posed problems with multiple right-hand sides, we suggest global L-curve criterion as an extension of L-curve technique for image restoration problems with single right-hand side.

Keywords

References

  1. S. Chung, S. J. Kwon, and S. Y. Oh, A weighted global generalized cross validation for Gl-CGLS regularization, J. of Chungcheong Math. Soc. 29 (2016), 59-71. https://doi.org/10.14403/jcms.2016.29.1.59
  2. P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems.
  3. P. C. Hansen, Analysis of Discrete Ill-Posed Problems by means of the L-Curve, SIAM Review, 34 (1992), 561-580. https://doi.org/10.1137/1034115
  4. P. C. Hansen and D. P. O'Leary, The use of L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), 1487-1503. https://doi.org/10.1137/0914086
  5. P. C. Hansen, Rank-deficient and discrete ill-posed problems, SIAM, 1998.
  6. P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
  7. P. C. Hansen, Regularization tools 4.0 for Matlab 7.3, Numerical Algorithms 46 (2007), no. 2, 189-194. https://doi.org/10.1007/s11075-007-9136-9
  8. M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM J. Sci. Comput. 21 (1999), no. 3, 851-866. https://doi.org/10.1137/S1064827598341384
  9. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, 1995.
  10. S. Y. Oh, S. J. Kwon, and J. H. Yun, A method for structured linear total least norm on blind deconvolution problem, Journal of Applied Mathematics and Computing 22 (2006), 373-385. https://doi.org/10.1007/BF02896486
  11. S. Y. Oh, S. J. Kwon, and J. H. Yun, Image restoration by the global conjugate gradient least squares method, J. Appl. Math. & Informatics 31 (2013), 353-363. https://doi.org/10.14317/jami.2013.353
  12. S. Y. Oh and S. J. Kwon, Preconditioned Gl-CGLS method using regularization parameters chosen from the global generalized cross validation, J. of Chungcheong Math. Soc. 27 (2014), 675-688. https://doi.org/10.14403/jcms.2014.27.4.675
  13. T. Reginska, A regularization parameter in discrete ill-posed problems, SIAM J. Sci. Comput. 17 (1999), no. 3, 740-749. https://doi.org/10.1137/S1064827593252672
  14. M. Rezghi and S. M. Hosseini, A new variant of L-curve for Tikhonov regularization, Journal of Computational and Applied Mathematics 231 (2009) 914-924. https://doi.org/10.1016/j.cam.2009.05.016

Cited by

  1. Assimilation of Doppler radar radial wind data in the GRAPES mesoscale model with observation error covariances tuning vol.147, pp.737, 2017, https://doi.org/10.1002/qj.4036